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Abstract 
 

 A three-dimensional neutron transport based, heterogeneous reactor code (3D-

TRAN) was developed to model simple uniform isotropic sources and isotropic fission 

sources. The code was developed using level symmetric angular quadrature sets and three 

spatial quadratures: the Diamond Difference (DD), Step, and Linear Characteristic (LC) 

methods. Each method was analyzed and compared for accuracy, rate of convergence, 

and stability. The LC method was found to be the most accurate method with a broader 

range of stability through heterogeneous absorbing regions than the DD method. The 

Step method always remains positive and stable, but converges very slowly to a specified 

answer in the limit as the mesh is refined.  

 The isotropic fission source was examined against the parallelepiped and right 

circular cylinder diffusion theory analytical solutions. The resulting flux profiles closely 

matched the diffusion analytical solution with eigenvalues for the right circular cylinder 

matching those produced in a numerical diffusion code written by Harman (2001) to 

within a relative error of less than one percent. Numerous initialization routines and input 

files were written to handle reactor type heterogeneous geometries to include the fuel pin, 

the fuel assembly, the cylindrical reactor core with rings, and the commercial power 

reactor. All geometries have the ability to utilize axial variations in the core.  

 The convergence speed of the code was modified using a linear extrapolation/ 

shooting method designed to reduce the number of iterations to convergence during 

eigenvalue calculations. Initial results show improvements of at least 60% reductions in 

overall computation time. The method was optimized over homogenous fission reactor 

configurations. 
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COMPUTATIONAL MODELING OF A TIME-INDEPENDENT, 

HETEROGENEOUS REACTOR CORE USING SIMPLIFIED DISCRETE 

ORDINATES NEUTRON TRANSPORT TECHNIQUES 

 
 

Chapter I: Introduction 
  

 The development of a three dimensional, structured cubic mesh Discrete 

Ordinates neutron transport based reactor code is presented.  This code, 3D-TRAN, 

solves the linear, time-independent Boltzmann Transport Equation for the angular flux 

density using the Diamond Difference, Step, and Linear Characteristic spatial quadratures 

and a level symmetric angular quadrature. The performance and limitations of the code 

(Chapters 3 and 4) are discussed in detail along with the theoretical development 

(Chapter 2) of  the algorithms and conclusions about the results (Chapter 5). Background 

and motivation for this project are explained in the proceeding paragraphs along with the 

problem statement and generalized approach to the problem. 

 
Background 
 
 Reactor physics and kinetic feedback is often simple to understand, but extremely 

difficult to represent analytically.  Analytical representations generally center on 

idealizing a nuclear reactor core with neutron diffusion theory. Analytical diffusion 

theory is both easy to understand and simple to implement for homogenous problems.  In 

most cases, more complicated reactor physics problems are modeled using computer-

based codes that convert the differential diffusion equations to finite difference, element 

or nodal algorithms. These equations are then solved through iterative procedures capable 

of modeling more complex heterogeneous problems where discrete analytical 
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representation is difficult to formulate and solve. The problem with diffusion theory is 

that it is an approximation of the more physically accurate theory of neutron transport. To 

derive diffusion theory, approximations are made to the Boltzmann neutron transport 

equation that remove angular and energy scatter dependence (by angular integration) and 

idealize all particle interactions as isotropic. The benefit of these approximations is that 

faster computational speed (if solving via a computer) can be attained at the limitation of 

reducing the realm of reactor problems that can be physically and correctly modeled.  

Diffusion theory becomes highly inaccurate when performing calculations near a vacuum 

boundary, near or inside of highly absorbing materials (such as reactor control rods) and 

within any other material that is strongly anisotropic in nature (or has a strong 

directionally dependent flux). Therefore, diffusion theory based computer models may 

not yield a desired result when trying to physically understand the particle interactions 

inside a reactor core. The more accurate way to model a reactor core is to use neutron 

transport theory directly. 

 Neutron transport theory incorporates a more accurate representation of the 

particle-to-particle interactions that occur inside a nuclear reactor core. The benefit is that 

a wider range of reactor problems can be solved that consider highly absorbing regions or 

vacuum boundary currents. The cost of this analysis is that the neutron transport equation 

cannot be solved analytically. The equations must be solved using one or more of the 

many numerical methods available to an analyst. The more popular methods include 

Monte Carlo (a statistical based stochastic method), which utilizes particle path/collision 

tracking techniques based on probability distribution counting statistics, and discrete 

ordinates, which discretizes the angular integration over specified fixed directions.  The 
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benefit of Monte Carlo analysis is that it best represents the physics of tracking a 

particle�s path from birth, to collision(s), to final absorption or loss. The cost of the 

Monte Carlo calculation is that a significant number of particles (on the order of millions) 

must be represented to reduce error in the particle distribution (if the code is analogue or 

only capable of tracking one particle at a time). Monte Carlo solutions are generally 

accurate (to within the distribution error) and are often considered as the benchmark for 

any neutron transport calculation performed. The discrete ordinates calculation makes an 

approximation to the angular, spatial, and energy integral in the transport equation. The 

advantage to this calculation is that it is generally faster than Monte Carlo techniques and 

will theoretically converge to the correct answer if the angular, spatial, and energy grids 

are refined in such a way that the discetization of the transport integrals approach the true 

Riemann integral representation. The disadvantage of using discrete ordinates is finding 

accurate, stable numerical methods that correctly model the discretizations in the 

transport equation. There are many methods for handling the spatial and angular 

integrations such as the diamond difference spatial method (averaging technique) and 

Gauss-Legendre angular numerical integration.  There are also spatial characteristic 

methods that perform numerical integrations along the streaming path of the particles.  

These spatial methods are considerably more accurate than the diamond difference 

method, but are more computationally intensive (and expensive) to model.  A more 

detailed description of these methods will be presented in Chapter 2.  

 As of the time of this thesis, the Air Force Institute of Technology (AFIT) has 

developed a working homogenous model of a three-dimensional cylindrical reactor core 

using two-group diffusion theory (Harman, 2001).  This code has many limitations and 
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only allows for highly idealized cylindrical reactor problem studies. The next step is to 

add the capability of performing heterogeneous or multi-region reactor analysis over 

more realistic reactor shapes (such as parallelepipeds or rough, jagged edged cylindrical 

shapes modeled after real commercial power reactors).  The approach taken should be 

accurate and time efficient.  For accuracy, this author has chosen to disregard diffusion 

theory and proceed with neutron transport using discrete ordinates. The discrete ordinates 

method was chosen because of its numerical advantages in converging to the �correct� 

solution in the limit of spatial and angular mesh refinement. The benefit is that a wider 

range of problems can be analyzed more accurately without the limitations of diffusion 

approximations. The heterogeneous problem becomes relatively simple while adding the 

ability to model highly absorbing regions and vacuum boundary currents1.  Of course, 

care must still be taken in using numerical methods to solve the neutron transport 

equation, especially when solving problems using absorbing materials.  

Due to the limited time of this research, certain idealized assumptions from 

Harman�s two-group diffusion code will still be used.  These assumptions include the use 

of an isotropic fission source and scattering source on the right hand side of the transport 

equation.  This is essentially the same source used by Harman (2001).  The rest of the 

research will focus more on developing an accurate spatial scheme to best handle a 

heterogeneous medium. The complexity involved in evaluating differential scatter cross 

section data for an anisotropic scatter source will not be covered in this research and 

therefore limits the problems modeled to isotropic idealized conditions. Further 

descriptions of the numerical theory will follow in Chapter 2. 

                                                 
1 Boundary current is the directional flow of neutrons through a cell or problem boundary. This quantity is 
a vector relation and is best described as N number of particles passing through a given unit surface area.  
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Motivation 
 
 The development of this research stems from a desire to present nuclear 

engineering students with a modeling tool to explore reactor behavior and physical trends 

that occur during reactor operations. The use of diffusion theory or neutron transport 

theory as a model basis present both a learning opportunity and a familiarity with the 

limitations of both theories. The diffusion theory solution to reactor physics is covered 

extensively in undergraduate texts with explanations for analytical solutions as well as 

numerical applications with certain omissions from the development (see Harman, 2001).  

Neutron transport theory is generally discussed in a way that the student can see the 

relation of diffusion theory as a subset of neutron transport theory. The goal of this effort 

is to develop a working reactor computer model using neutron transport theory to provide 

a student with the opportunity to learn how to implement a transport code as well as learn 

about the numerical limitation imposed on this theory. A student versed in neutron 

transport will have a better understanding and appreciation for reactor physics from both 

diffusion and transport viewpoints. An understanding of the limitations of diffusion 

theory will aid students in designing appropriate reactor models for any nuclear reactor 

problem of interest; therefore, the neutron transport code developed in this effort will 

address some of the more relevant issues concerning proper implementation of a neutron 

transport based code package. 

 

Problem Statement 
 
 The goal of this research is to develop a working three-dimensional computational 

model of a heterogeneous, time-independent, critical, pressurized water reactor (PWR).  
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The development of this model has evolved from a study of three dimensional neutron 

transport in Cartesian coordinates using the discrete ordinates Linear Characteristic, 

Diamond Difference, and Step spatial approaches on a structured cubic mesh. More 

specifically, the development of the Linear Characteristic method over cubic cells and the 

direct coordinate transformations required will be derived and explained.  The 

development of this research includes the equations used and the methodology chosen to 

solve the time-independent neutron transport equation.  The final code includes a two 

group energy model with a built in expansion capability to model three or more energy 

groups. The code models heterogeneous unit fuel cells (circles within a square), fuel 

assemblies (a parallelepiped) and a full reactor core (a rough edged circle made of fixed 

dimension fuel assemblies). Also, the capability of modeling simplified uniform sources 

(for neutron shielding problems) as well as isotropic fission sources is included. The 

transport numerical method is examined for performance based on the criteria of speed, 

and accuracy in predicting reactor physics behavior in the homogenous and 

heterogeneous reactor cores. Monte Carlo based neutron transport serves as the 

benchmark needed to compare overall performance of the discrete ordinates algorithms 

explored here. The reliability and accuracy of the Monte Carlo transport technique adds 

credibility and reality to the foundations of this research.  

 

Approach 
 

The primary goal of this research was to develop a working model of a reactor 

using neutron transport as the foundation of the numerical model. The code developed 

(called 3D-TRAN) had the following features: 



7  

1. Three-dimensional modeling capability. 

2. Time-independence, steady-state analysis. 

3. Numerically stable quadratures in angle and space. 

4. Capability of performing calculations on coarse mesh grids (for core 

models) to within a defined stability range determined by analysis. 

5. Model heterogeneous material regions inside the reactor. 

6. Meshing scheme capable of modeling different reactor geometries to 

include: 

a. Unit fuel cell (concentric circular rings within a square) 

b. Parallelepiped (used to develop the fuel assembly) 

c. Right circular cylinder (to model fixed dimension assemblies as a 

rough circular core as in a real power reactor) 

d. Cylinder with multiple concentric rings (multi region core) 

e. Ability to add axial variations to all geometries. 

7. Model multiple boundary conditions on each of the geometries listed 

above to include several combinations of the following: 

a. Vacuum 

b. Symmetric, full reflective 

c. Albedo, reflective. 

8. Model simple uniform source emitters and isotropic scatter sources. 

9. Model isotropic fission sources to represent a reactor. 

10. Calculate eigenvalues for fission based problems. 

 

The primary approach undertaken (to model a nuclear reactor ) in this study 

involved solving the time-independent Boltzmann Transport Equation (BTE) for neutral 

particles. This equation, in its most general form, is:  

 � � �[ σ(r, E)] (r, ,  E) = S(r, ,  E)Ω ∇ + Ψ Ω Ω
v v v v
" . (1.1) 
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The terms on the left hand side (LHS) of the equation represent neutron losses and the 

term on the right hand side (RHA) represents neutron sources.  The adaptation of this 

equation to numerical applications is discussed in detail in Chapter 2.   

The source on the RHS can consist of a uniform, isotropic emitter, isotropic or 

anisotropic scatter source or a fission source (either single group or multi-energy group 

dependent). For our case, three basic sources were chosen.  First, the uniform isotropic 

emitter and the simplified isotropic scatter source (using a simple scatter fraction of 0.0 to 

1.0 representing full absorption to full scatter) were used to test the three dimensional 

spatial quadrature routines developed in Chapter 2. The simplified source allows for 

known inputs into the LHS of the BTE to help test for correct implementation of the 

spatial quadrature. Lastly, an isotropic representation of the fission source similar to 

Harman (2001) was used as a first try at using neutron transport to model a reactor. 

�Within group� scattering and �down scatter� (neutrons going to the next lowest energy 

level or direct coupling) is assumed. Any addition of anisotropic scatter, etc., to the 

fission source will increase overall computational time and computer modeling 

complexity.  Due to the limited time available for research, the anisotropic source was 

disregarded.  

After choosing the type of sources to model, the discretizations of the angular and 

spatial domain on the LHS of the BTE2 were chosen. For angular discretization, a Level 

Symmetric numerical integration quadrature formula was used.  There were several 

quadrature rules to pick from (Atkinson, 1989) (Burden and Faires, 1997) (Lewis and 

Miller, 1993); however, the Level Symmetric quadrature has traditionally been proven to 

work well in three-dimensional Cartesian coordinates, especially for symmetry 
                                                 
2 Otherwise known as the Discrete Ordinates approach. 
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boundaries (Lewis and Miller, 1993) (Carlson, 1971). A more descriptive explanation of 

the angular discretization is found in Chapter 2 and Appendix A.  

The next step was to pick the neutron energy groups.  For this study, a two-group 

representation consisting of fast and thermal neutrons or a one-group thermal neutron 

representation was chosen.  The two-group model is the traditional separation of the 

neutron energy spectrum commonly found in reactor applications (Larmash, 1983) 

(Duderstadt, 1976) (Ott and Bezella, 1985). Sometimes, a four-group representation is 

used with three fast groups and one thermal group (Duderstadt, 1976). The finer 

resolution of the energy spectrum can produce more accurate approximations to the 

reactor physics; however, the total gain in accuracy found with finer resolution is 

generally minimal when comparing the computational cost of calculating two extra 

energy groups. With this in mind, the code was written in a generalized form for more 

than two energy groups (with one fast group up to G total energy groups) for any future 

analysis that desires a finer resolution in the thermal energy spectrum of the neutrons.  

Now that the energy groups are defined, the spatial quadrature was chosen.  This 

quadrature approximates the LHS of the BTE.  A proper choice must be made for this 

quadrature in order to maintain numerical stability for many problems of interest. The 

traditional spatial quadrature method is Diamond Difference (DD) (Lewis and Miller, 

1993) (O�Dell, 1987) (Carlson and Lathrop, 1965). This method uses an averaging 

technique over inflow and outflow fluxes to calculate the central cell average. It is both 

easy to implement and simple to understand. The DD method is linear in nature and has 

second order convergence, both of which are generally desired properties of spatial 

quadratures (Lathrop, 1969). The third desired property of spatial quadratures is 
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positivity.  The method should produce strictly non-negative fluxes because negative 

fluxes are numerically unrealistic artifacts that sometimes creep into numerical solutions; 

therefore, negative fluxes produce unreliable results. The DD method does not have strict 

positivity and suffers from numerical instability if the mesh width is too large or the 

material is too dense3. These instabilities generally result in negative unrealistic flux 

values that can, and usually do, oscillate about zero - especially near or at a boundary 

between two materials with a high differential between densities (Mathews 1999). An 

excellent description of this numerical instability in two dimensions along with several 

other spatial quadratures is presented in Mathews (1999).   

Based on the findings of Mathews (1999), two other methods were chosen to 

compare against Diamond Difference.  The first is the Step method. This method assumes 

a constant source within the cell; therefore, the exiting flux out of the cell is set equal to 

the cell average. This method is even easier than DD to implement and understand.  The 

benefit of Step is that it is always non-negative and linear in nature. A disadvantage of 

Step is its consistent ability to overestimate the flux because of its smearing effects on 

material meshes (Mathews, 1999). The benefit of Step is that it converges quickly since 

the number of computations per cell is extremely small and simple to evaluate.   

The final spatial quadrature examined is the Linear Characteristic method (LC). 

The LC method calculates both the zeroth moment (the average) and the first moments of 

the flux.  This advantage allows LC to produce more accurate results over larger mesh 

cell sizes than the Diamond Difference method (Mathews, 1999). The LC method is also 

more stable than the DD method; however, it does not have strict positivity.  The LC 

                                                 
3 The combination of the cell width and material cross section forms a relation commonly referred to as 
optical thickness. 
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method is a linear method with second order convergence or better depending on the 

mesh geometry and size (Brennan, 1996) (Miller, 1998) (Mathews, Miller, and Brennan, 

2000).  In general, the LC method assumes a linear distribution of the source flux across 

inflow and outflow faces of the cell as well as within the cell itself.  The Linear 

Characteristic method is more complex to develop and requires a substantial amount of 

computational time compared to DD and Step methods. The biggest advantage to any of 

the characteristic methods is that they perform integrations along the path of the particles 

and reduce smearing effects caused by simple averaging across the cell4. The vast 

complexity and intensive modeling of the LC method are explained in further detail in 

Chapter 2. 

 Investigation and development of the 3D-TRAN code used several test problems 

based on the Monte Carlo statistical approach5. The use of Monte Carlo as a benchmark 

to check the 3D-TRAN code provided an alternative method for checking the Discrete 

Ordinates numerical approach.  The Monte Carlo routine used, named the Monte Carlo 

Analogue Sn code, was developed at AFIT by Suriano (2001).  The Analogue Sn Monte 

Carlo code allowed for direct comparison and validation of spatial quadratures used in 

the 3D-TRAN code for both continuous angle, energy, and space (Analogue) as well as 

continues space, energy and discrete angle (Sn).    

                                                 
4 The Exponential Characteristic method (EC) is another characteristic spatial quadrature that produces 
strictly non-negative fluxes (at second order convergence or better) and works extremely well over large 
cell widths and absorbing regions. The disadvantage is that it is highly non-linear in nature and requires 
numerical root solving techniques to solve for the coefficients of the assumed form of the source. The 
computational complexity will drive calculation times higher than the LC method; therefore, the EC 
method was disregarded as a viable spatial quadrature for this research at this time. A more detailed 
analysis of this method is presented in Miller (1998) for 3D tetrahedral meshes.  
5 The Monte Carlo statistical method is considered as the primary benchmark of reactor/particle transport 
based numerical models.  Further detail on Monte Carlo can be found in Lewis and Miller (1993).   
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Finally, the code is written in FORTRAN 95 for its versatility over FORTRAN 

77. Newer intrinsic functions as well as automatic compiler optimization allow for one-

line linear algebra operations and matrix manipulations. The input for the code is 

currently set as a Namelist input file (see Ellis, 1994). This type of input allows for 

versatility and growth as the code develops. Easy user interface input menus were not 

developed in this effort.  All material values and geometry types are input into the 

Namelist file along with types of sources and quadrature methods chosen. A 

preprocessing subroutine handles all initializations of material arrays corresponding with 

desired geometry and required boundary conditions. Angular ordinates are assigned 

based on the Sn quadrature set chosen. Reflection boundary arrays are built to link 

ordinates that are reflections of one another at a reflective or albedo boundary. These 

arrays link the angular fluxes (a function of the angular ordinate) together for reflective 

boundaries and allow for the passing of reflected values with appropriate sign change to 

the correct angular flux mesh point.  

The computer code follows a specific order for calculating through the material 

problem mesh. The mesh walk scheme begins by picking a direction ordinate (µ, η, and ξ 

in three dimensions) and walking in that general direction6 (with the flow of particles) 

through the entire (x, y, z) mesh, starting by moving across a row in the x direction and 

proceeding one step at a time in the y direction completing an xy plane. After an xy plane 

is calculated, the walk moves up one step in z to calculate the next xy plane. Boundary 

                                                 
6 The walk through the spatial mesh follows the direction assigned by the most recent angular direction 
ordinate. As directions rotate about the unit directional sphere, the mesh walk must be adjusted accordingly 
to follow the flow of particles.   This involves starting the spatial mesh walk at a new location for each 
angular ordinate based on its 3D vector direction.  Performing the mesh walk this way produces a stable 
solution that converges more quickly when compared to walking against the directional flow of particles 
(Lewis and Miller, 1993). The directional flow of particles is solely specified by the Sn quadrature set 
(angular ordinates) assigned as the approximation to the angular integration of the BTE.   
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conditions are appropriately treated as they are confronted during the walk through the 

mesh. This continues until the entire mesh is calculated once for a given angular flux 

direction. A new ordinate is picked and the walk continues until all ordinates are 

calculated for the angular flux. The angular flux is converted to a scalar flux via the 

numerical angular quadrature rule and if isotropic sources are used, convergence is 

checked for the energy group. All energy groups are calculated and global convergence is 

checked (either by eigenvalue or scalar flux comparisons). If convergence is achieved, 

the code exits. Otherwise, calculations continue until convergence criteria are met or the 

maximum iteration is reached. A generalized FORTRAN pseudo-code summarizing this 

procedure is provided in figure 1.1. The following chapters will expand upon the 

numerical theory and testing required to fully develop the 3D-TRAN code.  

INITILIZE spatial mesh arrays 

DO OUTER LOOP until converged 

 DO ENERGY LOOP starting with group 1 ending with group g 

  DO DIRECTION ORDINATE pick a direction set 

   DETERMINE mesh corner starting location 

   DO SPATIAL WALK walking in positive (µ, η, ξ) 

    WALK  in x, y, then z 

CHECK and update boundaries 

   END DO spatial walk 

  END DO directional ordinate 

 END DO energy group 

CALCULATE scalar flux  (and eigenvalue if fission source used) 

CHECK CONVERGENCE of scalar flux and/or eigenvalue, EXIT if converged 

END DO outer loop, repeat until converged 
 

Figure 1.1: FORTRAN Pseudo-Code for 3D-TRAN 
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Chapter II: General Theory 
 

 The following chapter discusses all theoretical development explored and 

implemented in this research. The discussion begins with a general description of the 

neutron transport equation and its application in numerical problems.  Following the 

transport equation, a description of the spatial discretization schemes and their limitations 

is provided for the Diamond Difference, Step and the Linear Characteristic methods.  

  

General Overview of Neutron Transport Theory 
 
 To begin our development of the neutron transport approach to modeling a 

reactor, one must first examine the neutron transport equation and the simplifying 

assumptions necessary to treat it numerically. The fundamental equation describing 

neutron particle transport is the linear Boltzmann transport equation (BTE) (Lewis and 

Miller, 1993). The generalized form of the time-independent equation is as follows:  

 � � �[ σ(r, E)] (r, ,  E) = S(r, ,  E)Ω ∇ + Ψ Ω Ω
v v v v
" . (2.1)   

The angular neutron flux density is represented by Ψ and is a function of its position at 

point rv , moving with an energy E, in a given direction �Ω . The streaming term 

�� (r, Ω, E)Ω ∇Ψ
v v
"  and the collision term �σ(r, E) (r, Ω, E)Ψv v account for particles lost out of 

a given phase-space. The macroscopic cross section σ(r, E)v  represents the total 

probability of interaction via any collision within the volume for energy E1. The source 

term, � S(r, ,  E)Ωv , accounts for all particles born in the phase space �(r, ,  E)Ωv .  The BTE 

describes the balance of neutral particle flow in three spatial dimensions ( rv ), two angular 

                                                 
1 In neutron transport, the macroscopic cross section is given the symbol σ instead of Σ in order to prevent 
confusion with the summation symbol associated with numerical integration. (Lewis and Miller, 1993) 
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dimensions ( �Ω ), and energy (E). For the case of Cartesian coordinates, the streaming 

operator term is represented as: 

 �
x y z

µ η ξ∂Ψ ∂Ψ ∂ΨΩ ∇Ψ = + +
∂ ∂ ∂

v
"  (2.2) 

where the direction cosines of the Cartesian axes are � �= xeµ Ω" , � �= yeη Ω" , and � �= zeξ Ω" . 

Figure 2.1 shows the orientation of the direction cosines to the particle streaming 

direction �Ω  (Lewis and Miller, 1993).   

 

 

 

 

 

 

 

Figure 2.1: Cartesian Coordinate (x, y, z) Vector Relations 

The solution to equation (2.1) is generally found by integrating over the variables 

� (r, ,  E)Ωv . By integrating the BTE over all angles, one gets: 

 �(r, E) = d  (r, , E)φ Ω Ψ Ω∫
v v . (2.3) 

To approximate this integral numerically, use the following quadrature rule: 

 ,
1

(r, E ) = (r, E )
N

g g n n g g
n

wφ
=

Ψ∑v v  (2.4) 

where the summation is carried out over N ordinates for a given energy group g. For 

reflection boundary conditions, the quadrature equation (2.4) must contain an even 

z

y 

x 

µ η

ξ 
Ω
v

�xe  

�ye

�ze
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number of weights symmetrically distributed about the origin of the unit directional 

sphere. The symmetry allows angular flux reflections within already chosen angular 

ordinates that provide an easy method for handling reflection boundary conditions (See 

Appendix B for boundary conditions treatment). To approximate this quadrature set, level 

symmetric quadrature weights are used because they meet all necessary conditions for 

symmetry in Cartesian coordinates (Lewis and Miller 1993) (Carlson, 1971). There are 

many other quadrature sets available such as the Gauss-Chebyshev quadrature and the 

Composite Midpoint quadrature (Atkinson, 1989); however, a Level Symmetric 

quadrature set was chosen because it has been proven to be stable, accurate, and easy to 

program in multi-dimensional Cartesian coordinates problems (Lewis and Miller 1993) 

(Carlson, 1971)2. Further discussion of the angular quadrature treatment is given in 

Appendix A.  

The integration of the BTE over energy is performed by dividing the neutron 

energy spectrum into G energy groups (Lewis and Miller, 1993). Due to the linearity of 

the Boltzmann Transport Equation, one can separate out each energy dependent angular 

flux distribution and represent it as follows: 

 � �(r, ) dE (r, ,E)g g
Ψ Ω = Ψ Ω∫

v v  (2.5) 

or for multi-energy groups: 

 1g

g

E

g E
dE dE−=∫ ∫  (2.6) 

In this representation, the lowest energy is EG and the highest is E0. The total angular flux 

is found as follows: 

                                                 
2 The reader is referred to the references for further discussion on why level symmetric quadratures work 
well in three-dimensional space; especially with reflective boundary conditions. 
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1

� �(r, ) dE (r, ,E)
G

g
g=

Ψ Ω = Ψ Ω∑∫
v v  (2.7) 

The code developed in this research uses a multi-energy group representation so that after 

the angular integration is performed over all energy groups, one has the following 

relation: 

 1 2(r) = (r) + (r) + . . . + (r)Gφ φ φ φv v v v  (2.8) 

where 1(r) φ v represents the fast energy group neutron flux (greater than 1.0 MeV) 

and 2 (r)φ v  through  (r)Gφ v represent the thermal energy groups (less than 1.0 MeV).  

The final integration over all space is performed by discretizing the problem 

domain into a structured or unstructured grid that divides the spatial regions efficiently. 

The BTE is calculated over each cell in the grid and point values are found at the center 

of each cell. For ease of modeling, a structured cubic or parallelepiped cell grid was 

chosen to represent the three-dimensional phase space. The spatial quadrature sets used in 

this research are explained in the next section.  This finishes our discussion of the left 

hand side of the BTE. 

The right hand side of the BTE consists of the source. The source can be 

represented in many ways: uniform, isotropic scatter, anisotropic scatter, fission or any 

combination of these as appropriate to the problem of interest. In general, the time-

independent source with fission term has the following form: 

 s

f  

� �S(r, ,  E) = (r, ,  E) 
� � � �                    + ' 'σ (r, ' , ' ) (r, ',  E') 

χ(E) � �                    + ' σ (r, E') ' (r, ',  E') 

extq

dE d E E

dE d
k

ν

Ω Ω

Ω → Ω Ω Ψ Ω

Ω Ψ Ω

∫ ∫

∫ ∫

v v

v v
"

v v

 (2.9) 
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where the first term represents all external sources, the second term represents the 

scattering source using the differential scatter cross section, and the third term represents 

the fission source without delayed neutrons (see Lewis and Miller, 1993 for a more 

detailed discussion). The fission term contains the fission energy distribution function 

χ(E)  and the eigenvalue k for reactor criticality. For this study, the RHS of the BTE was 

simplified from its general form assuming isotropic scatter and fission sources. The 

simplification involves integrating out the angular dependence, reducing the right hand 

side to: 

 
s

f

S(r, E) = (r, E)  + σ (r, E) (r, E) + 
χ(E)              σ (r, E) (r, E)

extq

k

φ

ν φ

v v v v

v v  (2.10) 

where σs is the isotropic scatter cross section (consisting of all scatters into energy E and 

any �within group� scattering) and σf is the isotropic fission cross section. Equation 

(2.10) represents the source used for modeling a simple isotropic reactor. Further 

simplifications were made to develop a simplistic source with no fission to aid in testing 

the spatial quadratures used in the 3D-TRAN code. The form of the source is as follows: 

 t extS(r, E) = cσ (r, E) + S (r, E)                    φv v v  (2.11) 

where Sext is a uniform constant source for a given energy , c is the scatter fraction 

(ranging from 0 to 1 or full absorption to full scatter)  and σt is the total cross section. 

This form of the source reduces the iteration process to a simple calculation with 

convergence on the scalar flux, eliminating the need for any eigenvalue search 

calculations.  

The iterative approach to solving the BTE numerically is called the Von Neumann 

iteration on the source (Lewis ands Miller, 1993) (Lathrop, 1965). This method assumes a 
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form of the source as the first guess for the RHS of the BTE  and then calculates the LHS 

of the BTE.  The source is updated and the LHS is calculated.  This continues until 

convergence is achieved; therefore, the BTE can be represented as an iterative equation 

as follows: 

 1 m� � �[ σ(r, E)] (r, ,  E) = S (r, ,  E)m+Ω ∇ + Ψ Ω Ω
v v v v
"  (2.12) 

where m represents the iteration number.  The convergence of the solution to the BTE 

can be performed either on the scalar flux (the traditional way) or the eigenvalue if 

calculating on a fission source. For eigenvalue convergence, the Power Iteration Method 

is generally the accepted procedure for generating and reaching convergence to a solution 

of the eigenvalue (Lewis and Miller, 1993) (Harman, 2001) (Duderstadt, 1976).  This 

method is well known and will not be explained any further. 

 

Spatial Quadratures 
 

The spatial quadratures used in the 3D-TRAN code are the Diamond Difference 

method, Step, and the Linear Characteristic Method. Each of these methods is developed 

from a basic understanding of the neutron balance equation for a given unit cell.  For this 

research, a structured cubic or parallelepiped mesh was used as the shape of the basic 

computational cell. The following sections discuss the derivations of the balance equation 

and the subsequent spatial quadrature methods.    
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Neutron Balance for the cubic cell 

The neutron balance equations are derived for the smallest computational unit in 

the problem spatial mesh, a cubic cell with sides of length ∆x, ∆y, and ∆z. Figure 2.2 

below shows the orientation of the single mesh cell. 

 

 

 

 

 

 

 

Figure 2.2: Computational Mesh Cell 

Each face is labeled in order to reference entering and exiting fluxes along the faces of 

the mesh cell. The zeroth balance equation3 is found by integrating the BTE, equation 

(2.1) with the equation (2.2) applied, over the unit mesh volume or dxdydz∫∫∫ . The 

following notation is used to simplify and reference the fluxes along the face: 

 
B 0 0

F 0 0

Back Face   (0, , )

Front Face   ( , , )

y z

y z

dy dz y z
y z

dy dz x y z
y z

∆ ∆

∆ ∆

⇒ Ψ = Ψ
∆ ∆

⇒ Ψ = Ψ ∆
∆ ∆

∫ ∫

∫ ∫
 (2.13)  

 
D 0 0

T 0 0

Down Face   ( , ,0)

Top Face   ( , , )

x y

x y

dx dy x y
x y

dx dy x y z
x y

∆ ∆

∆ ∆

⇒ Ψ = Ψ
∆ ∆

⇒ Ψ = Ψ ∆
∆ ∆

∫ ∫

∫ ∫
 (2.14)   

                                                 
3 The zeroth balance equation represents the neutron conservation relationship between incoming and 
exiting average flux values over the unit cell based on the geometry chosen.   

∆z

∆x

∆y
0

Top 

Right

Down 

Left 

Back 

Front 



21  

 
L 0 0

R 0 0

Left Face   ( ,0, )

Right Face   ( , , )

x z

x z

dx dz x z
x z
dx dz x y z

x z

∆ ∆

∆ ∆

⇒ Ψ = Ψ
∆ ∆

⇒ Ψ = Ψ ∆
∆ ∆

∫ ∫

∫ ∫
 (2.15)   

The division by ∆x, ∆y, and ∆z in each of the above equations transforms the arbitrary (x, 

y, z) mesh to a unit cell with sides of length one with corresponding transformed axes (u, 

v, w). The fluxes represent the average flux over the faces and can be numerically 

approximated. The simplified zeroth balance equation then becomes: 

 F B R L T D A A( ) ( )yx yz y
y Sα α ε

η
∆Ψ − Ψ + Ψ − Ψ + Ψ − Ψ + Ψ =  (2.16) 

where,  

 t t tσ σ σ;    ;     x y z
x y zε ε ε

µ η ξ
∆ ∆ ∆= = =  (2.17)  

 ;     y y
yx yz

x z

ε ε
α α

ε ε
= =  (2.18) 

 A 0 0 0
 ( , , )

x y xdx dy dz x y z
x y z

∆ ∆ ∆
Ψ = Ψ

∆ ∆ ∆∫ ∫ ∫  (2.19) 

 A 0 0 0
  ( , , )

x y xdx dy dzS S x y z
x y z

∆ ∆ ∆
=

∆ ∆ ∆∫ ∫ ∫  (2.20) 

The source has been simplified as a function called S(x,y,z) for derivation purposes with 

both SA representing the average source and ΨA representing the average flux or zeroth 

moment within the cell volume. The energy dependence is ignored for now because each 

of these equations applies to all energy groups of interest (assuming proper energy 

dependent material properties are substituted appropriately in each equation).  Equation 

(2.16) serves as the basis for numerically finding the average flux in a mesh of unit 

computational cells. For particle flow into and out of the cell, the flux is assumed to enter 
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through the back, down, and left faces and exit through the front, top, and right faces (see 

figure 2.3). This fundamental orientation of fluxes across the unit mesh cell faces is 

maintained for all transport calculations. The cell itself is allowed to rotate and reorient 

itself to the direction of particle flow determined by each angular ordinate in the Sn set.  

The final set of balance equations needed correspond to the first moments across the unit 

cell.   

 

 

 

 

 

 

 

 

 

Figure 2.3: Inflow and Outflow Fluxes of the Unit Mesh Cell 

The first moment of the flux is found by multiplying the BTE by the first 

Legendre polynomial then integrating over the volume of the unit cell4. The P1(x) 

Legendre polynomial is scaled and centralized about the center of the cell volume or the 

center of the cell face. This representation allows for easy interpretation of the first 

moments in a cell and follows the traditional derivations found in the literature (Lewis 

and Miller, 1993) (Carlson and Lathrop, 1965). The advantage to central based first 

                                                 
4 The first moment balance equations are only used by the Linear Characteristic method. Since this method 
assumes a linear distribution, one uses the modified, centralized first Legendre polynomial as an 
approximation to the assumed form of the neutron distribution within the unit cell and along the cell faces. 
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moments is that they correspond with the location of the zeroth cell average within the 

unit cell volume and along the cell face. The first moments are represented as follows: 

 x 10 0 0
   3P (x) ( , , )

x y xdx dy dz x y z
x y z

∆ ∆ ∆
Ψ = Ψ

∆ ∆ ∆∫ ∫ ∫  (2.21) 

 y 10 0 0
  3P (y) ( , , )

x y xdx dy dz x y z
x y z

∆ ∆ ∆
Ψ = Ψ

∆ ∆ ∆∫ ∫ ∫  (2.22) 

 z 10 0 0
  3P (z) ( , , )

x y xdx dy dz x y z
x y z

∆ ∆ ∆
Ψ = Ψ

∆ ∆ ∆∫ ∫ ∫  (2.23) 

where the factor 3 is a constant designed to normalize the Legendre polynomial.  Now, 

the flux moments about the back face on the unit cell are defined as follows: 

 
By 10 0

Bz 10 0

 3P (y) (0, , )

 3P (z) (0, , )

y x

y x

dy dz y z
y z

dy dz y z
y z

θ

θ

∆ ∆

∆ ∆

= Ψ
∆ ∆

= Ψ
∆ ∆

∫ ∫

∫ ∫
 (2.24) 

and the front face moments are: 

 
Fy 10 0

Fz 10 0

  3P (y) ( , , )

  3P (z) ( , , )

y x

y x

dy dz x y z
y z

dy dz x y z
y z

θ

θ

∆ ∆

∆ ∆

= Ψ ∆
∆ ∆

= Ψ ∆
∆ ∆

∫ ∫

∫ ∫
 (2.25) 

The same technique is applied to the down, top, left, and right faces with the 

corresponding x, y, or z axis swap performed as necessary5. The source also has first 

moments associated with it of the form: 

                                                 
5 First moments about an inflow or outflow face are commonly represented by the symbol θ  rather than Ψ. 
This notation helps avoid some confusion between face and volumetric flux moment values (Mathews, 
1999) 
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x 10 0 0

y 10 0 0

z 10 0 0

   3P ( ) ( , , )

  3P ( ) ( , , )

   3P ( ) ( , , )

x y x

x y x

x y x

dx dy dzS x S x y z
x y z

dx dy dzS y S x y z
x y z

dx dy dzS z S x y z
x y z

∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆

=
∆ ∆ ∆

=
∆ ∆ ∆

=
∆ ∆ ∆

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 (2.26) 

The first volumetric moments within the cell are similar to the face moments, but defined 

as follows: 

 

x 10 0 0

y 10 0 0

z 10 0 0

   3P ( ) ( , , )

   3P ( ) ( , , )

   3P ( ) ( , , )

x y x

x y x

x y x

dx dy dz x x y z
x y z

dx dy dz y x y z
x y z

dx dy dz z x y z
x y z

∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆

Ψ = Ψ
∆ ∆ ∆

Ψ = Ψ
∆ ∆ ∆

Ψ = Ψ
∆ ∆ ∆

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 (2.27) 

After performing the necessary integrations and substitutions over the BTE, the first 

moment balance equations for x, y, and z for the unit cell are as follows: 

 F B A Rx Lx Tx Dx3 ( 2 ) ( )yx yz y x x
ySα θ θ α θ θ ε

η
∆Ψ + Ψ − Ψ + − + − + Ψ =  (2.28) 

 Fy By R L A Ty Dy( ) 3( 2 ) ( )yx yz y y y
ySα θ θ α θ θ ε

η
∆+ + Ψ + Ψ − Ψ + − + Ψ =  (2.29) 

 Fz Bz Rz Lz T D A( ) 3 ( 2 )yx yz y z z
ySα θ θ θ θ α ε

η
∆+ + − + Ψ − Ψ − Ψ + Ψ =  . (2.30) 

Now we have all the equations necessary to check for neutron balance in a three 

dimensional, cubic computational cell.  

The balance equations are used along with required auxiliary equations in order to 

solve for all unknown fluxes in the unit cell. The auxiliary equations are based on 

assumptions that constitute a type of spatial quadrature. The spatial quadratures of 

interest in this project are the Diamond Difference Method and the Step method, both of 
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which require the zeroth balance equation only. The final spatial quadrature, the Linear 

Characteristic Method, requires the first moment balance equations as well as the zeroth 

balance equation to check for neutron balance over the unit cell. These methods are 

described in more detail in the following pages.  

 

Diamond Difference Method 

The Diamond Difference (DD) technique is the most common method used in 

discrete ordinates because of its simplicity and easy implementation. It assumes a set of 

auxiliary equations that perform an average to the flux across the inflow and outflow 

faces of a unit cell (Lewis and Miller, 1993) (O�Dell, 1987). These equations reduce the 

number of unknowns in the zeroth balance equation and allow for generation of a simple 

solution to the average flux inside the cell. For three dimensions (referencing the 

configuration of figure 2), the auxiliary equations are: 

 L R F B T D
A 2 2 2

Ψ + Ψ Ψ + Ψ Ψ + ΨΨ = = =  (2.31) 

where the known values (inflow fluxes) are ψL, ψB, and ψD.  The inflow fluxes are known 

either from boundary conditions or from the outflow fluxes of an adjoining cell; 

therefore, the iteration on this method (as well as the other discrete ordinates methods 

presented in this research) must begin at a corner of the problem mesh where the three 

inflow values to the unit cell are specified and walk into the interior of the problem. The 

unknown of interest for the discrete ordinates methods is usually the average flux within 

the cell. After substituting equation (2.31) into the balance equation (2.16), the DD 

equation for the average flux in the cell becomes: 
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A B D L

A

2 2 2

2( 1)

yx yz

yx yz y

yS α α
η

α α ε

∆ + Ψ + Ψ + Ψ
Ψ =

+ + +
. (2.32) 

The DD method has second order convergence and is a linear-continuous method 

(O�Dell, 1987), but can produce negative fluxes.  The negative fluxes are caused by the 

averaging technique used to generate the method. As cell widths become large and or 

material cross sections become large, the calculation of the average flux in equation 

(2.32) can produce a positive result; however, when the outflow fluxes are calculated 

from equations (2.31), the result can yield negative fluxes on the outflow faces6. The next 

cell in line for computation will then start with negative inflow fluxes. The end result is 

that the average flux will become negative, or it will oscillate about zero if the flux is 

small (Mathews, 1999). Therefore, DD works well for small mesh sizes and moderate to 

low density materials, but the mesh must be carefully examined for negative fluxes and 

adjusted finer as material density increases.   This makes large-scale reactor problems 

difficult to model on desktop computers because of the large material mesh sizes required 

and the relatively limited memory (RAM) space available for calculations to run 

efficiently.   

 

Step Method 

The Step method uses an assumption that the source remains constant within a 

computational cell. This method avoids the negative fluxes commonly found with the 

Diamond Difference method, but only has linear convergence. The Step method is very 

                                                 
6 Negative fluxes are produced when the average flux calculated in the cell is less than half the value of the 
incoming flux.  
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easy to implement because the auxiliary equations approximate the outgoing fluxes equal 

to the cell average flux.  These equations are as follows: 

 A F R TΨ = Ψ = Ψ = Ψ . (2.33) 

When these assumptions are substituted into the zeroth balance equation (2.16), the 

average cell flux is calculated as: 

 
A B D L

A 1

yx yz

yx yz y

yS α α
η

α α ε

∆ + Ψ + Ψ + Ψ
Ψ =

+ + +
. (2.34) 

The outgoing fluxes are then calculated by using equations (2.33). The Step method 

works very well for most applications, but has a tendency to overestimate flux profiles in 

problems of interest (Mathews, 1999). The use of the auxiliary equations tends to smear 

the flux over the computational cell and can often reduce or dampen flux variations in 

larger computational cells, especially near material boundaries. The Step method is very 

fast in implementation because it uses only four simple equations to calculate flux in each 

unit cell. The positivity associated with the method also makes it a very useful technique 

for producing rough, first-look estimates of general flux shapes in more complicated 

problems. This method also makes a good initial guess generator for more complicated 

methods such as the Linear Characteristic method discussed in the next section.  

 

Linear Characteristic Method 

The Linear Characteristic (LC) spatial quadrature method, like all characteristic 

methods, assumes a generalized form of the source distribution within a computational 

unit cell (Mathews, Miller, and Brennan, 2000). The LC functional form of the source 

within the cell is: 
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 u v w( , , ) A + B B BS u v w u v w= + +  (2.35) 

where the coordinates (u, v, w) represent any right-handed orthogonal based three-

dimensional coordinate system. The coefficients A, Bu, Bv, and Bw must be determined 

for each cell to define the linear source distribution function.  These coefficients are 

found by using the known zeroth and first moments of the source within the cell as well 

as the assumed linear distribution of the flux across an entering cell face. These values 

are known either by initial conditions or are defined from a previous iteration. With the 

source distribution defined, the zeroth and first moments of the fluxes can be calculated 

within the cell as well as along the exiting cell faces. This process is more complicated 

than the Diamond Difference and Step methods presented earlier and will require a closer 

examination of the orientation and subdivision of the computational cell.  

In general, the characteristic methods take into account the direction of travel of 

neutrons within the computational cell. The directional ordinate of the angular integration 

defines the direction of travel of the neutrons. Integration along the particle directional 

path is performed to sum up all contributions of particles born from the within cell source 

as well as summing the particle contribution entering the cell from surrounding cells in 

the mesh.  Since the direction of travel is important in characteristic methods, the 

orientation of the unit cell to the particle directional flow is critical to the successfully 

implementation of this method. For this research, a cubic or parallelepiped structured 

mesh7 is assumed as in figure 2.2 with fluxes entering and leaving the cell as in figure 

2.3. For a given direction ordinate, the unit cell is broken down into as many as eleven 

sub cells defined by a given directional ordinate vector (Suriano, 2001). Figure 2.4 below 

                                                 
7 In this research, a well-structured mesh implies no overlap of cell faces between adjoining cells.  Or in 
other words, the exiting faces of the cell directly line up with the entering faces of adjoining cells. 
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illustrates the subdivision of the unit cell. For any off-diagonal directional ordinate, the 

unit cell is broken down into four prisms, six tetrahedrons and one parallelepiped.  If a 

direction ordinate falls along the cube diagonal, the unit cell is only broken down into six 

tetrahedrons. Therefore, our three-dimensional problem is reduced to as many as eleven 

one-dimensional calculations along the streaming direction. At first glance, there appears 

to be eleven different sets of equations to derive for each ordinate in the Sn set; however, 

one can use a simple Jacobian transformation technique8 that converts our eleven sub 

volumes into three basic unit volumes, the tetrahedron, the prism, and the parallelepiped. 

The Linear Characteristic equations are defined for each of the three sub volumes. For 

brevity, the equations for each volume are derived in Appendix C. 

 

 

 

 

 

 

 

 

 

Figure 2.4: Direction Ordinate Cell Splitting Technique 

After the unit cell is broken down into at most eleven sub volumes, the average 

zeroth and first moment fluxes are computed in each sub cell as well as across the exiting 

                                                 
8 The LC tetrahedron paper by Mathews, Miller, and Brennan (2000) outlines the Jacobian transformation 
technique in detail. 
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face of the sub cell volume. The fluxes are transformed back to the orientation of the 

global unit cell and recombined using volumetric and area weighted averages based on 

the global unit cell volume and outflow face areas. The process continues with the next 

unit cell in the array until all cells are calculated in the spatial mesh. A more descriptive 

overview of the Jacobian transformation process required for the LC method is provided 

in Appendix D.  

The LC method is a linear iterative method with at least second order 

convergence or higher in three dimensions (Brennan, 1996). The LC method is 

considered to be more stable than Diamond Difference and does not suffer from synthetic 

numerical dispersion when propagating particles along given directional paths (Mathews, 

1999); however, LC does not have strict positivity. It can and will produce negative 

fluxes in numerical situations when the optical thickness of the cell is too great. The 

advantage LC has over Diamond Difference is that the characteristic integrations 

performed carry both zeroth and first moment information about the neutron flux. The 

addition of first moment information allows LC to be calculated over larger optical 

thicknesses compared to the same Diamond Difference stable meshing requirements. 

Therefore, larger computational cells can be used in the mesh thereby reducing the total 

mesh size and computer memory requirements needed to perform the calculations 

(Mathews, 1999). 

 The reduction of mesh sizes comes at a great cost. The number of LC 

computations required per unit cell are far greater than those of Diamond Difference or 

Step and dramatically increase code run times from milliseconds to minutes. This 

undesired effect is nullified by the fact that Diamond Difference requires a finer mesh 
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array for stability thereby increasing computer memory requirements exponentially. A 

point is reached in the computations of a finer mesh where the computer uses hard disk 

space as virtual memory and begins writing data back and forth from RAM to disk. The 

communication process required for this to happen drastically slows down the computer 

and can cause an increase in code run time from seconds to hours. Therefore, the ability 

to run the same problem over a coarser mesh in a few minutes using the Linear 

Characteristic method suddenly becomes very desirable. An analysis of this effect is 

given in Chapter 3 by comparing all spatial methods used in this research.  
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Chapter III: Performance and Evaluation 
 

The following chapter summarizes the results of the performance tests used to 

evaluate the 3D-TRAN code for proper implementation of the theory discussed in 

Chapter 2. These tests include convergence testing over refined meshes, angular 

quadrature comparisons, heterogeneous mesh testing, and timing studies. All results are 

summarized and used to describe key features of the transport techniques used in the 3D-

TRAN code.  

  

Convergence Testing 
 

The success of numerical methods depends on their ability to approach the correct 

answer represented by the equations being modeled. A properly implemented numerical 

method should converge to a specific answer as problem parameters such as mesh size 

are refined. This fact stems from the ability of a good numerical method to converge to 

the true solution in the limit as the discretized parameters become small and approximate 

more closely a continuous medium. For the transport methods of Chapter 2, this property 

should also hold true.  Therefore, the first series of tests involves testing the refinement of 

the spatial mesh grid and its effects on convergence.  

 The Analogue Monte Carlo statistical method is considered the best estimate of 

the solution to the transport equation for all comparisons of the discrete ordinates 

techniques since it assumes a continuous angle, space, and energy flux distribution 

(Lewis and Miller, 1993). In order to test the implementation of the discrete ordinates 

spatial quadrature, a more direct comparison is needed.  The development of a Monte 

Carlo Sn code by Suriano (2001) allowed for testing of the error in the spatial quadrature 
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while essentially ignoring the error in the angular quadrature. This is accomplished by 

forcing Monte Carlo angle draws along the discrete ordinates rays defined by the angular 

quadrature set. Essentially, the Monte Carlo is modified to be continuous in space but 

discrete in angle thereby duplicating the discretization of the angular integral performed 

in discrete ordinates. This capability makes MCSN a suitable benchmark1 and it allows 

for checking the order of convergence of the spatial quadrature to see if the implemented 

techniques meet or exceed their documented convergence criteria. 

The first test performed comes from the literature (Miller, 1998) (Brennan, 1996). 

The test problem consists of a 1.0 cm edged cube with vacuum boundary conditions on 

all sides. The cube contains a uniform source of 1.0 neutron/cm3/sec and a total cross 

section of 1.0 cm-1 with a scatter fraction of 0.5. The Monte Carlo (MC) and Monte Carlo 

Sn (MCSN) techniques were run on the cube with no spatial discretization to form the 

                                                 
1 A high number of particle draws were required to reduce the statistical error associated with Monte Carlo 
to a standard deviation of less than 10-5.  This criteria was used for all Monte Carlo test runs. 

Figure 3.1: Spatial Quadrature Convergence Test for 1.0 cm Edge Cube 
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benchmark.  The spatial quadratures consisting of Diamond Difference (DD), Step, and 

Linear Characteristic (LC) were run starting at one spatial mesh cell.  The spatial mesh 

was refined by a factor of two for each subsequent run. The results using the most refined 

angular quadrature set, S16, are given in figure 3.1. 

The flux convergence profile2 for each spatial quadrature shows that as the mesh 

is refined, convergence to the MCSN answer is achieved as expected. At the dimensions 

of a 1.0 cm cube, the DD and LC methods converge rapidly to the MCSN benchmark as 

the mesh is refined. The Step method still has not converged as well as the other methods 

as indicated in the enlarged graph plotted over a reduced scalar flux range for clarity. The 

LC method performs the best as it quickly approaches the benchmark answer within one 

spatial refinement of the mesh.  

The convergence of the spatial quadratures provided in figure 3.1 shows proper 

convergence behavior in the transport solution to the scalar flux, but shows nothing about 

the order of convergence in the spatial quadratures. The order of convergence can be 

examined by plotting the absolute relative error (as compared to MCS16) against the mesh 

refinement factor on a logarithmic plot. The order of convergence is found by comparing 

the slope of the line made by the data for each method.  This behavior is shown in Figure 

3.2.  This graph shows that all methods are following their prescribed order of 

convergence as stated in Chapter 2. The linear step and second order LC methods both 

converge linearly (on a Log-Log plot) as the errors are reduced with each refinement in 

the mesh cells. The convergence of the DD method varies in coarser meshes, but 

                                                 
2 The flux represented in Figure 3.1 is the value of the flux over the entire cube. This value is found by 
calculating the volume weighted average flux over the entire mesh.  This way, as the mesh is refined and 
many flux values are calculated, a global flux value is generated for the cube for comparison with the 
Monte Carlo continuous space answer and proper convergence behavior can be observed.   
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eventually settles in on quadratic convergence in the refined spatial meshes. This erratic 

convergence behavior is inherent in DD and becomes increasingly unstable as the spatial 

mesh coarsens and optical thickness increases. Therefore, DD only performs well under 

finer mesh conditions. 

A comparison of the relative error in figure 3.2 suggests that LC out performs 

both DD and step in converging to the benchmark.  The error in the LC method is more 

than a factor of 10 lower than DD and more than a factor of 100 lower than Step.  In the 

test case above, a comparison of the LC method�s relative error over a given mesh 

suggests that LC performs about the same as DD at a refinement factor of four more cells 

per LC cell and 16 more cells per LC cell for Step.  Although these results are problem 

specific, the magnitude of the mesh refinement comparisons between LC and DD/Step 

appears to hold for all test cases run; therefore, these results suggest that LC should be 

Figure 3.2: Order of Convergence of Spatial Quadratures 
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used over a less refined spatial grid when compared to DD and Step to achieve lower 

relative errors in the scalar flux. The use of the LC method will also keep problem 

material mesh sizes lower compared to DD and Step which becomes very important 

when running problems on memory limited computers.  

The convergence testing was repeated for all angular quadratures (S2, S4, S6, S8, 

S16) with the same results and behavior as those presented in figure 3.1 and 3.2. The test 

problem was also modified to a 10 cm cube and a 100 cm cube to check convergence 

over large optically thick cells. Again, the LC method continued to out perform Step and 

DD in calculating scalar flux in reduced mesh sizes.  The DD method also showed 

increased instability in convergence in the coarser meshes proving that DD is relatively 

unreliable for meshes with large cells. Step performed very well over large meshes with 

stable convergence and relative errors out performing those of DD. The results of these 

tests are not shown because they essentially duplicate the behaviors already displayed in 

figures 3.1 and 3.2 with the exception of increased convergence instability in the DD 

method over increasingly larger cells. 

 

Angular Quadrature Comparisons 
 

The convergence of the transport equation is dependent on the type of spatial 

quadrature, its spatial mesh refinement and the type of angular quadrature used. The 

spatial quadrature was discussed in the previous section by eliminating the error present 

in the angular discretization using the MCSN benchmark code. In this section, the 

angular quadrature is discussed referencing the shape of the flux profile and the 

maximum and minimum errors present. The S16 angular quadrature set was used as the 
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benchmark for each spatial quadrature method because it represents the most refined 

quadrature set used in this research. At 288 angular ordinates, the use of S16 in large 

spatial mesh problems will add to computer memory requirements needed to execute the 

code thereby slowing calculation time. The goal of the angular quadrature tests was to see 

how well lower order angular quadrature sets predicted the shape of a flux profile by 

examining the maximum and minimum relative errors compared to S16.   

 The parameters for this test problem are listed in table 3.1. The angular 

quadrature was varied using S2, S4, S6, S8, and S16. The flux profile of interest for each 

angular quadrature was taken from the center channel of cells running from one 

boundary, through the center of the cube to the other boundary. The one dimensional flux 

profile starting at the center of the cube is plotted in figure 3.3 using the LC spatial 

quadrature method. Figure 3.3 suggests that the flux profile is best approximated using 

any quadrature set higher than S4.  The S2 quadrature set did not perform as well as the 

other quadratures because of the low number of directional ordinates (totaling eight) 

present in the set. The S4 set triples the number of discretized angles thereby reducing the 

overall error significantly, but not as well as S6 and S8. These results show that S2 should 

Problem Parameter Value

Cube width 2.75 cm
Cells per side 11
Source 1.0 n/cm3/sec
σt 1.0 cm-1

Scatter Fraction, c 0.5
Boundary Conditions Vacuum

Table 3.1: Angular Quadrature Test Problem Parameters 
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not be used for more realistic transport calculations where flux profile shapes are very 

important.  The Step and DD spatial quadratures produced almost identical results to 

those in figure 3.3 showing that the S6 quadrature seems to predict a flux shape that is 

fairly consistent with that produced by the S16 quadrature. 

The maximum and minimum relative error for the angular quadratures compared 

to S16 is shown in Figure 3.4 grouped by spatial quadratures. This figure supports the 

analysis made on figure 3.3 by showing the relatively large errors for the S2 quadrature 

for all three spatial methods. In most cases, an increase in the angular quadrature causes a 

decrease in the relative error. A comparison of figure 3.3 and figure 3.4 shows that the 

use of the S6 quadrature will guarantee a good flux profile as well as a maximum error 

compared to S16 of less than 3% or better. The S4 quadrature can be used; however, it 

tends to under predict the maximum value of the flux compared to higher order angular 

quadrature sets. In most reactor calculations, the maximum flux value is very important 

Figure 3.3: Angular Quadrature Comparison of Scalar Flux using LC 
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in identifying regional power spikes; therefore, at least the S6 quadrature should be used. 

The extra computation time required by the S8 (80 ordinates) and S16 (288 ordinates) 

quadratures is not necessary since figures 3.3 and 3.4 show that S6 (48 ordinates) 

produces flux profiles consistent with both S8 and S16.  

 

Heterogeneous Testing 
 

The goal of this research was to develop a transport code capable of performing 

calculations on multiple region problems.  This requires an initialization routine designed 

to properly fill numerical arrays that contain the correct material parameters 

corresponding to its spatial position in the problem. These arrays are then accessed in the 

correct order during the spatial walk calculation. In this section, the heterogeneous 

capability of the 3D-TRAN code is explored by performing a simple test, the traditional 

Figure 3.4: Angular Quadrature Relative Error Comparison 
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source/shield problem, and analyzing each spatial quadratures ability to handle optically 

thick computational cells. The test problem consists of two distinct slab regions with the 

following parameters: 

1. Source region with S = 100 n/cm3/sec 

a. Length = 3.0 cm in x direction, 0.75 cm in the y and z directions 

b. σt = 1.0 cm-1 and scatter fraction c = 0.5 

c. cell widths of 0.25 cm on each side 

d. Fixed region material for all tests 

2. Absorbing region, S = 0 n/cm3/sec 

a. Length = 1.5 cm in x direction, 0.75 cm in the y and z directions 

b. σt = 1.0 cm-1 and scatter fraction c = 0, pure absorption 

c. Cell widths of 0.25 cm on each side 

d. Variable region material � increase optical thickness by increasing σt 

3. Boundary conditions3 

a. Xmin = Symmetry, Xmax = Vacuum  

b. Ymin = Ymax = Zmin = Zmax = Symmetry.  

 

                                                 
3 The use of symmetry boundary conditions in the y and z directions numerically forces constant flux 
values along these directions. The only variation in the flux profile exists in the x direction; therefore, a one 
dimensional �slab� calculation is simulated using a transport code designed for three dimensions. 
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The problem simulates infinite slab geometry in the y and z directions and semi-

infinite slab geometry in the x direction. The flux profile was examined to check for the 

proper exponential decay behavior in the absorbing region.  The results for all spatial 

quadratures using the S6 angular quadrature are given in figure 3.5. Also, the Monte 

Carlo analogue and Monte Carlo Sn runs are plotted for comparison of discrete ordinates 

to Monte Carlo methods.   

The flux profile in figure 3.5 shows that all spatial quadratures compare well with 

the Monte Carlo predicted fluxes. The overall relative shape of the flux shows that the 

transport code is properly attenuating the neutrons in the absorber region characterized by 

the exponential decay towards the vacuum boundary on the right. The error in the spatial 

quadratures can be examined by looking at the MC S6 flux profile4. The error analysis 
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that follows does not account for any other form of variance reduction in the Monte Carlo 

Sn; therefore, the MC S6 is taken as the best estimate to the real answer.    

Figure 3.6 summarizes the relative error of each spatial quadrature compared 

against the MC S6 flux profile.  The chart shows the error present in the maximum and 

minimum flux value of each spatial quadrature compared to the maximum and minimum 

MC S6 flux value. For clarity, the graph shows a scale enlargement with the magnitude of 

all errors shown in the smaller graph insert. As proven in the convergence tests, the LC 

method continues to predict flux values that are closer to the benchmark. The low relative 

error suggests that LC is more accurate in predicting flux values close to the benchmark. 

The Step method was the least accurate method in predicting flux values.  This result is 

highlighted in figure 3.5 when looking at the flux transition between regions.  The DD 

and LC methods show a relatively smooth transition between regions while the Step 

shows a more abrupt change in the flux.  These results are caused by the assumptions in 

                                                                                                                                                 
4 The error in the MC S6 predicted flux was minimized to within a standard deviation of less than 10-5. The 
discrete ordinate flux profiles were converged to a relative convergence tolerance of 10-6.  
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the Step method of a constant source within the cell. Figure 3.6 shows the error 

relationship for the maximum and minimum flux values only.  This graph does not show 

the relative change in error across the entire problem spatial domain.  

In figure 3.7, the relative error as a function of spatial position for each spatial 

quadrature is plotted compared to the MCS6 flux benchmark value. The scale is increased 

to accentuate the smaller less visible details shown by the full scale insert graph.  The 

graph shows that both Step and DD method suffer an increase in error at the boundary 

transition.  This error propagates to the absorber region.  The maximum relative error 

occurs at the boundary interface of the two regions for DD while Step has a large increase 

in error at the region boundary with the maximum error located at the vacuum boundary. 

The LC method maintains a low relative error through the region boundary transition all 

the way to the vacuum boundary. The LC maximum error is located at the vacuum 

Figure 3.7: Relative Error in Flux as a Function of Position 

0 .0 0 E + 0 0

5 .0 0 E -0 3

1 .0 0 E -0 2

1 .5 0 E -0 2

2 .0 0 E -0 2

2 .5 0 E -0 2

0 .0 0 0 .5 0 1 .0 0 1 .5 0 2 .0 0 2 .5 0 3 .0 0 3 .5 0 4 .0 0 4 .5 0 5 .0 0

P o s itio n  (c m )

R
el

at
iv

e 
Er

ro
r i

n 
Sc

al
ar

 F
lu

x

D D

S te p

L in e a rC h

S o u rc e  R e g io n A b s o rb e r R e g io n

0.00E+00

1.00E-01

2.00E-01

0.00 1.00 2.00 3.00 4.00 5.00

Source Region Absorber Region



44  

boundary and is relatively small compared to DD and Step; therefore, the LC method 

predicts the flux shape better than DD or Step spatial quadratures over this mesh size5.  

The LC and DD methods can become unstable if the optical thickness of the cell 

becomes too large. The next test uses the two-region �slab� problem, but varies the total 

cross section in the absorber region while maintaining a constant mesh size.  The goal of 

this test was to force negative fluxes in the DD and LC spatial quadratures and define a 

limiting optical thickness for maintaining realistic flux values.   

Figure 3.8 shows the variation in the flux profile of the absorbing region for the 

DD method only. As the total cross section is increased, the flux in the absorbing region 

decreases. Eventually, the optical thickness in the absorber region cells becomes too thick 

causing the flux to become negative.  This occurs at a cross section of approximately 

3.5cm-1. This test was repeated for both Step and LC. Step remained positive as the 

                                                 
5 The error present in the DD and Step quadratures can be reduced in the absorber region if the mesh size is 
reduced. This significantly adds to computer memory requirements and may take some �tweaking� in the 
mesh grid size to reduce errors to within those produced by LC. 
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literature states while LC generated negative fluxes after reaching a total cross section of 

about 11.5 cm-1.  The DD and LC negative flux behavior is summarized in figure 3.9. 

The DD and LC methods were examined at the location of the first negative flux 

occurrence.  For both methods, this occurred at a cell position of 3.5 cm. The flux in this 

cell was plotted in figure 3.9 as a function of the optical thickness ratio defined by 

dividing the absorber region optical thickness by the source region optical thickness.  In 

essence, this value is a ratio of the total cross section of each region. The scalar flux in 

the cell was normalized based on the peak flux value over the entire problem domain.  

The graph shows that the flux tends to become negative for both DD and LC as the 

optical thickness ratio increases.  As stated earlier, DD becomes negative much quicker 

than LC and begins oscillating between positive and negative values in the absorber 

region; therefore, the LC method performs better than DD over more optically thick cells.  

In fact, the LC method can calculate positive flux values over cells that are up to three 

times thicker than the optical thickness limit of the DD method. 
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Capability to model fewer as well as larger mesh sizes is possible by using the LC 

method. Accuracy can still be maintained without the costs associated with memory 

consumption caused by large numerical arrays. The reduced memory size comes at the 

price of increased computation time.  These costs are explored in the next section. 

 

Timing Tests 
 

The cost of running a computer code falls into two basic categories, memory 

consumption, and speed. The amount of memory used by a code depends on the types of 

calculations performed and the storage requirements required for data arrays and their 

inherent data structure. The configuration of the data will effect how a computer accesses 

the information.  If data is not structured consistently and concisely, computer access 

time is wasted sifting through arrays for the right pieces of data required in a calculation; 

therefore, the speed at which a computer code calculates depends primarily on the data 

configuration and its storage location in memory.  

For transport techniques, the discrete ordinates approach generally runs into lack 

of memory problems when spatial mesh grids become more refined and array sizes grow 

almost exponentially. On smaller spatial mesh arrays, the execution of discrete ordinates 

is relatively quick compared to the time required to implement a Monte Carlo technique. 

Monte Carlo suffers from a lower order of convergence in the error, approximately on the 

order of ½. This low order in error reduction forces large run times for achieving 

reasonable accuracy in the results. Therefore, the discrete ordinates approaches should be 

used when run times are more cost efficient than Monte Carlo techniques6. The following 

few paragraphs discuss the performance of the 3D-TRAN code in terms of total run time 
                                                 
6 Timing results for Monte Carlo vs. discrete ordinates is given in table 3.2 later in this chapter. 
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and memory consumption. All results are based on running the code on a Hewlett-

Packard Pentium 800 MHz desktop computer with 384M of RAM (100MHz access) and 

37G of hard drive space.  The processor used contained an AMD Athalon chip with a 200 

MHz front side BUS. The FORTRAN code was run using COMPAQ visual Fortran 

90/95 on a Microsoft Windows 98 operating environment.  

The timing for the computer code can be broken down into several pieces to 

include initialization of input data, array allocation and assignment, calculations, and 

output generation. In most cases, the dominant piece that drives the overall run time is the 

calculation section of the code. This holds true for 3D-TRAN.  Therefore, a fundamental 

unit of time that encapsulates the heart of the calculations was determined.  This unit of 

measure is called time per phase space cell. The calculations in 3D-TRAN are heavily 

dependent on the type of spatial and angular quadrature used. The higher the order of 

angular quadrature or the size of the spatial grid, the larger the variable array sizes 

become and the longer it takes to run the code. The time per phase space cell reduces the 

time measure down to a fundamental calculation over one cell and one angle ordinate. 

This value is calculated by taking the total run time and dividing by the number of 

iterations, the number of energy groups, the number of angular ordinates, and the number 

of mesh cells. The timing results per phase space cell for each spatial quadrature are very 

consistent and relatively problem independent. The results for each spatial quadrature are 

given in table 3.2. 

The timing results calculated in table 3.2 represent the average time per phase 

space cell for each method.  These values were calculated using all the timing results 

recorded in each of the various test problems performed earlier in this chapter. The DD 
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and Step spatial quadratures possess fairly constant timing results. The standard 

deviation, data range, and coefficient of variation support this conclusion.  These results 

are expected because both the Step and DD method use only a handful of equations to 

generate the average flux in the cell. These methods are not calculation intensive and 

thereby require only simple memory calls to array data.  

The LC method is quite different with regard to time required.  The calculation 

time is about 60 times higher than DD and Step. The extensive number of calculations 

performed in the LC method contributes greatly to the increase in time. Also, memory 

access speed slows down because the timing data showed an increase in the time per 

phase space cell as the angular quadrature and mesh array size increased. With larger 

arrays, it takes the computer code longer to search through all the arrays and find the 

required data while performing numerous calculations for one phase space cell.  This 

result is reflected in the standard deviation of the average time per phase space cell as 

well as the coefficient of variation indicating a large degree of scatter in the data about 

the mean. Therefore, the time per phase space cell calculation for LC can be used to 

generate an approximate guess at the run time for a given problem assuming the number 

of iterations to convergence is known.    

DD Step LC
Average 2.7E-06 2.7E-06 1.6E-04
Variance 3.0E-14 3.6E-15 1.3E-08
Standard Deviation 1.7E-07 6.0E-08 1.1E-04

Range 4.4E-07 1.6E-07 2.9E-04
Coefficient of Variation 6.5% 2.2% 71.8%

Time/Phase space cell (sec)

Table 3.2: Time per Phase Space Cell for Each Spatial Quadrature 
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The data listed in table 3.2 is very useful in determining the time it takes to 

perform a calculation. The first piece of information needed is the time it takes to perform 

one iteration through the code.  This is accomplished by multiplying the average time per 

phase space cell for the specified spatial quadrature by the number of spatial mesh cells 

and the number of angular ordinates. This number is then multiplied by the number of 

iterations required for convergence. Before calculating the final run time estimate, the 

memory limit of the computer must be examined.    

For the computer architecture used in this research, the discrete ordinates methods 

had a limit to how many phase space cell calculations were allowable within computer 

memory.  For DD and Step, about 8x106 calculations per iteration were possible while 

LC was only capable of 3x106 calculations. At these values, the computer starts using the 

hard drive as virtual memory, greatly slowing down calculation time as data is transferred 

between memory and disk.  A problem run time can jump from taking only few minutes 

to hours or even days with virtual hard drive memory.  Eventually the code fails because 

there is not enough computer memory. The calculation memory limit numbers help the 

user to define problem parameters to keep computer run times down and memory 

requirements within acceptable RAM limits. Although the memory limits are much lower 

for LC compared to DD and Step, the LC method requires less total phase space cell 

calculations (but performs more calculations per phase space cell) to achieve the same 

accuracy of the DD and step methods.    

After the time per iteration is determined and the memory limit evaluated, the 

number of iterations is required to generate a final run time for the code. The number of 

iterations is very difficult to predict since it is highly problem dependent. Therefore, if the 
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LC method is the desired spatial quadrature, the user should run the Step or DD method 

to see approximately how many iterations it takes for either method to converge. This 

number is generally consistent with the number of iterations required by LC to converge 

(at least this holds for the range of problems examined thus far in this research). The 

inherent positivity of Step and its speed make Step a good first guess to discovering the 

number of iterations required for a problem.  The DD method is not always a good 

predictor since certain heterogeneous problems may take longer for DD to iterate to 

convergence, especially if negative fluxes are present. This uncertainty in convergence is 

seen in table 3.3.  

 

The table summarizes the timing results obtained from the two-region three-

dimensional �slab� problem shown in figure 3.5. The Step and LC methods converged in 

41 iterations while the DD method converged in 133 iterations. The number of iterations 

required for DD was greater because the method suffered from instability in the more 

optically thick cells in the absorbing region. Since this region was a pure absorber with 

no source, the DD method initially calculated negative fluxes in the earlier iterations. 

This result is due to the initial guess of zero scalar flux for the first iteration. DD took 

extra iterations to stabilize and build the flux iteratively to a positive value. The Step and 

Method No. iterations Total Time (sec)
DD 133.00 2.37
Step 41.00 0.77
LC 41.00 31.75
MCS6 - 429.57
MC Analogue - 413.26

Table 3.3: Timing results from Two-Region “Slab” Problem 
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LC method are much more stable over optically thick cells and therefore avoided the 

instability of the DD method. As the optical thickness increases for the test problem, the 

DD method remains unstable in iterations required for convergence as the total number of 

iterations changes from a minimum of 130 to a maximum of 189. The LC and Step 

methods remain relatively stable at 41 total iterations required for convergence for all 

optical thicknesses tested. Therefore, Step serves as a good initial guess for the number of 

iterations to convergence over larger optically thick cells allowing for a good timing 

estimate to be calculated for the more accurate LC method. 

For comparison purposes, the Monte Carlo techniques are included in table 3.3 for 

a direct comparison of time with discrete ordinates.  These results show that Monte Carlo 

takes approximately 13 times longer to reach an answer (within a standard deviation of 

no greater than 10-4) than the LC method for the two region �slab� problem. A substantial 

increase in run time is required for Monte Carlo to reduce the overall statistical error in 

the scalar flux. Therefore, Monte Carlo is an expensive method for determining flux 

shapes over various problems while discrete ordinates is relatively inexpensive if 

problem sizes are small.  The deciding factor of determining which method, Monte Carlo 

or discrete ordinates, to use depends on accuracy required, computer memory available, 

and speed of calculations. These determinations are purely problem specific, but both 

methods can provide good direct comparisons to help verify the validity of data. 

 

Initial Guess and Its Effects on Code Run Time 
 

A final issue that deals with calculation time is the initial flux guess. The discrete 

ordinates approach requires an initial guess to the scalar flux so the right hand side of the 
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transport equation can be calculated. For simple transport problems, zero is generally 

used because the problems run quickly. For more complex problems, a zero flux guess 

increases the run time of the code because it takes longer to iterate to the final answer 

from zero.  This also may introduce negative fluxes early on in the iterative process that 

will greatly affect the total number of iterations required to convergence. This result was 

already seen with the DD method over the three-dimensional, two-region �slab� problem. 

Therefore, run times can be reduced if a good initial guess is used for the scalar flux.  

After examining the run times for all three spatial quadratures, the LC method 

takes the longest time with an average run time of 60 times higher than Step and DD. 

Therefore, a good first guess generator for LC is to use DD or Step to generate an initial 

guess to the flux profile. The scalar flux for the initial guess generator is converged to a 

larger tolerance than the final problem eliminating wasteful iterations. In general, the 

Step and DD methods may only contain the first one or two digits of accuracy compared 

to LC with accuracy increasing or decreasing based on mesh cell sizes. For more refined 

meshes where the optical thickness of the cell is much larger than the mesh cell size, the 

DD method predicts a good initial guess because the smaller mesh allows for stable 

convergence to answers closer to the LC method. As the cell size increases closer toward 

the optical thickness limit, the DD method becomes progressively worse.  The Step 

method then becomes the viable option for producing an initial guess since it performs 

better than DD over large optically thick cells.  

The results for these behaviors on convergence are very problem dependent. If the 

answer is not initially well defined, the Step method will always provide a good guess to 

the behavior of the answer since it is always positive. The DD method may also be used 
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as long as the optical thickness of the spatial cells is examined against the limit seen in 

figure 3.9. The average reduction in computation time seems to be only about 20%. This 

number is based on an initial guess convergence tolerance of three digits using either Step 

or DD as the guess generator. For more refined mesh problems such as the two-region 

slab problem of figure 3.5, the reduction in time can be as much as 60%.  These results 

are summarized in table 3.4. 

The first set of data listed in table 3.4 shows the initial run times for all three 

method using zero as the initial guess. The low run times for DD and Step suggest that an 

initial guess using either method will be generated quickly without any adverse effects on 

the LC run time. The LC method was run again with either DD or Step used as the initial 

guess generator.  The tolerance on the initial guess will generate three digits to start the 

LC method iterative process. The Step method took 22 iterations to generate its initial 

guess, but reduced the LC run time by about 23 %. The DD method took 48 iterations to 

generate its initial guess, but reduced overall run time by about 58%.  This is a substantial 

reduction in overall run time. The final times for LC using the initial generator include 

the time required to generate the initial guess. The DD method produced a better estimate 

of the initial guess than the Step.  In fact, the first three digits of the DD guess for every 

Method Iteration Tolerance Total Run Time (Sec)
LC 41 1.00E-06 31.75
DD 133 1.00E-06 2.37
Step 41 1.00E-06 0.77

Step 22 1.00E-03 24.33
DD 48 1.00E-03 13.4

Guess Generator and Effects on LC Method

Table 3.4: Two Region “Slab” Timing Data and Effects of initial Guess on LC 
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flux value matched those of the LC method. Only the first one or two digits of the Step 

matched the LC method. Therefore, a lower number of iterations can be achieved if more 

accurate digits are generated in the initial guess. For larger optically thick cell problems, 

the roles of DD and Step reverse with Step producing the better initial guess.  

Although numerous time reduction test problems were run duplicating previous 

tests performed in this chapter, the results indicate only the general behavior of when DD 

or Step are more applicable as an initial guess generator. The reduction in time for the LC 

method achieved by using the initial guess varied from as little as 10% to as much as 

60%. These results show that the LC method run time can be reduced if a good initial 

guess is generated. More research should be performed on either generating a better 

initial guess that works well over most problems or finding a suite of methods that work 

well for particular problems. The overall benefit will be achievable reductions in the LC 

run time that will play an important role in transport problems that run for many minutes 

or even hours.  For now, the DD and Step methods are used in the 3D-TRAN code for 

initial guesses to the LC method with an achievable decrease in the overall run time by at 

least 20%. This number assumes the initial guess generator will have at least the first one 

or two accurate digits in the guess that match those in the LC answer.     
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Chapter IV: Reactor Physics and Eigenvalue Calculations 
 
 

The following chapter summarizes the performance of the 3D-TRAN code against 

the analytical diffusion equations for a homogenous fission reactor in the shapes of a 

parallelepiped and a finite right circular cylinder.  The normalized flux profiles and 

eigenvalue calculations are compared against diffusion to check for correct modeling of 

the transport isotropic fission source term. After diffusion comparisons are presented, the 

3D-TRAN code is run for a few reactor based problems to demonstrate its overall 

versatility as a teaching tool for reactor physics.  

 

Diffusion vs. Neutron Transport Revisited 
 

The following sections of this chapter present a direct comparison of analytical 

diffusion theory to numerical neutron transport theory.  It is important at this time to re-

establish the importance of this comparison in order to better understand the purpose of 

this research.  

Diffusion theory is generally chosen as the predominate theory for analyzing 

nuclear reactor type problems. Analytical solutions are available for simplified reactors 

and conversion of diffusion theory to numerical applications is straightforward.  The 

numerical applications are generally fast in smaller dimension problems, but suffer from 

the same memory consumption issues of neutron transport when reactor size dimensions 

are utilized. Large spatial mesh arrays established under finite difference techniques are 

subject to relatively small spatial steps in order to produce stable results.  
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Heterogeneity adds another complication. Highly absorbing materials (such as 

control rods, burnable poisons, etc.) are very difficult to model accurately with diffusion 

theory. The angular dependence of the flux near such materials often makes diffusion 

theory inadequate within a few mean free paths away from the absorber boundary 

because of its assumed isotropic form of the flux.  

Neutron transport theory does not suffer from these effects.  Heterogeneity is 

easily modeled under numerical transport and angular dependence in the flux can be 

solved for explicitly. This fact makes neutron transport the optimal choice for studying 

heterogeneous reactor problems where control rod behavior (or other neutron absorbers) 

in fuel assemblies is of interest. Neutron transport does suffer from computer memory 

consumption, and numerically solving for eigenvalue type problems can also take a long 

time compared to diffusion theory. The end result is that neutron transport can produce a 

more realistic answer to a given problem because the transport behavior is modeled more 

directly than with diffusion theory where assumptions have removed angular dependence 

of the flux and assumed diffusive particle type behaviors.  Although, diffusion theory is 

very applicable in homogenous and relatively mild heterogeneous reactors, the neutron 

transport theory will yield the same results over the diffusion problem domains as well as 

produce more accurate answers than diffusion theory in highly heterogeneous problems. 

This final fact is why a neutron transport model of a reactor core is being explored in this 

research. 
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Homogenous Reactor Testing: Part 1, the Parallelepiped 
 

The diffusion equation can be used to generate analytical solutions to simplified 

geometry reactors. The general form of the one speed diffusion is: 

 2 ( ) ( ) ( )aD r r S rφ φ− ∇ + Σ =v v v  (4.1) 

 where D is the diffusion coefficient and Σa is the absorption cross section of the material. 

For a homogenous medium, the source term S is set to zero. The result is a simple 

differential equation that can be solved by determining the form of the del operator. For 

three-dimensional space in Cartesian coordinates, the solution to the homogenous, one 

speed diffusion equation becomes:  

 cos cos cosx y zA
a b c

π π π     
     
     

. (4.2) 

The dimensions of the parallelepiped consist of sides of length a, b, and c and A 

represents a normalization constant based on the problem of interest. Equation (4.2) can 

be directly used to predict the normalized flux shape inside a homogeneous 

parallelepiped reactor. Only one modification is required to the diffusion equation, the 

use of extrapolated boundaries.  These extrapolated boundaries correct for the physical 

behavior of the neutron flux not going to zero at the actual problem boundary1. The 

extrapolation relation is based on a correction predicted by the neutron transport equation 

and has the form of: 

 0.71 0.71(3 ) 2.13trd D Dλ= = =  (4.3) 

where d is called the extrapolation distance and λ tr is the transport mean free path 

(Lamarsh, 1983). This distance is added to the lengths of the sides of the reactor to 
                                                 
1 The extrapolation distance corrects the diffusion equation near regions such as vacuum boundaries where 
Fick�s Law, a key assumption used to derive diffusion theory for neutron transport theory, is no longer 
valid.  
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correct the neutron flux near vacuum boundaries. With these tools in hand, a comparison 

of the predicted flux shape can be made between diffusion and neutron transport.  

The first problem of interest was designed based on the work performed by 

Harman (2001). His work used a set of two energy group cross sections defined in table 

7.2 of Duderstadt and Hamilton (1976). The cross sections are summarized in table 4.1. 

The neutron transport analysis requires the total cross section and the �within-group� 

scattering term to correctly model the isotropic fission source.  The total cross section 

was calculated based on the diffusion coefficient and assumes that the transport cross-

section is approximately the same as the total cross section. This assumption is valid only 

for an isotropic medium (Duderstadt and Hamilton, 1976) because the average scattering 

cosine, µ0, is relatively small (meaning scatter is likely to occur in any direction) and the 

diffusion coefficient equation becomes: 

 [ ] [ ]1 1
0

1 1( , ) ( , ) ( , ) ( , )
3 3t s tD r E r E r E r Eµ − −= Σ − Σ ≈ Σv v v v . (4.4) 

The �within group� cross sections can then be calculated by subtracting the absorption 

cross-section and the group g to g ′ scatter cross section from the total cross section. As 

with Harman�s work, the fission distribution assumes all fission neutrons are born in the 

upper energy group.   
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Group 
Constants 1 of 2 2 of 2 

νΣf (cm-1) 0.008476 0.185140 
Σf(cm-1) 0.003320 0.075370 
Σa(cm-1) 0.012070 0.121000 
D(cm) 1.262700 0.354300 
ΣR(cm-1) 0.026190 0.121000 
Σs12(cm-1) 0.014120 0.000000 
Σt(cm-1) 0.263984 0.940822 
Σsgg(cm-1) 0.237794 0.819822 
χ(E) 1.0 0.0 

 The parallelepiped reactor modeled using the 3D-TRAN code used the two group 

cross sections of table 4.1, the S6 angular quadrature, and consisted of a cube surrounded 

by vacuum with sides of length 300 cm.  The length was designed to yield an eigenvalue 

better than one. The mesh spacing inside the reactor was refined using the techniques of 

Chapter 3 to determine the convergence of the average flux value across the reactor. This 

test was performed to verify that the scalar average flux did indeed appear to converge to 

a specific value and to verify the stability of the eigenvalue iteration procedure in 

accurately reproducing consistent results over more refined meshes. The results are 

summarized in figure 4.1. 

The graph shows that as the mesh is refined, the average flux does appear to 

converge to the analytical diffusion average flux value. This figure shows the same 

consistent behavior of figure 3.12. The analytical diffusion actually lies slightly beneath 

the converged transport solutions. In reality, the diffusion average flux value has an error 

associated with it.  The extrapolation distance used to model the boundaries of the 

diffusion based reactor is an approximated transport correction factor. The approximation 
                                                 
2 A relative tolerance of 10-6 was used for the scalar flux and 10-6 was used for the eigenvalue.  

Table 4.1: Two Group Cross-Sections for typical PWR reactor 
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Figure 4.1: Convergence on Average Scalar Flux Fission Test 
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contains some magnitude of error. Therefore, the analytically solved average flux value 

may lie slightly above or slightly below its current position. The magnitude of the error is 

relatively small and not considered important in this test problem. The important point of 

figure 4.1 is to show that the transport solution and the analytical diffusion solution are in 

relative agreement with each other; therefore, the overall flux shape predicted by 3D-

TRAN for our remaining homogenous analysis will be compared against the analytical 

diffusion equations3.  

                                                 
3 Note that the magnitude of the flux units of figure 4.1 is purely dependent on the initial guess used in the 
3D-TRAN code. Unlike the results of chapter 3 where a source was specified with an actual value, the 
fission source on the right hand side of the transport equation will drive the magnitude of the flux generated 
in the solution. In other words, there can be multiple solutions to the flux profile; however, the overall 
shape of the profile will remain the same. This effect is seen in diffusion theory when solving the 
Helmholtz equation with zero sources or sources containing flux (Duderstadt and Hamilton, 1976) where 
the magnitude of the flux (for example, 1010) is easily divided out of the equation. 
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Figure 4.2 shows the two-dimensional parallelepiped, xy flux profile at a z value 

of 150cm predicted by the Linear Characteristic (LC) method.  The plot has been 

normalized to the maximum flux value. This plot shows that the LC model appears to 

represent the correct flux shape predicted by equation (4.2). The Diamond Difference 

(DD) and Step models predict the same behavior and are omitted for brevity. A more 

direct comparison can be made by looking at a one-dimensional slice through the core at 

the centerline with z = 150cm and x = 150cm moving along the y direction. These results 

are seen in figure 4.3. 

The graph shows that the numerical transport solution and the analytical diffusion 

solution are relatively close. For graphing purposes, a square cell size of 15 cm (a side) 

was chosen to examine the relative error using analytical diffusion as the benchmark. 
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This represents a refinement of 20 cells on each side of the reactor. The DD and LC 

methods tended to predict the same flux profile while Step over predicted the profile near 

the edge of the reactor. The refinement of the spatial grid in the transport solution did 

force the transport solution to more closely approximate the analytical diffusion solution. 

There was a consistent tendency of the transport and the analytical diffusion solutions to 

differ near the boundaries of the reactor core. This result is caused by the difference in 

how each method handles the boundary conditions. The diffusion solution assumes a 

fixed boundary that is adjusted using the transport correction approximation of equation 

(4.3). The transport solution assumes that the incoming flux along a vacuum boundary is 

fixed to zero, but it does not fix the outgoing flux. The flux will adjust along the edge 

according to the spatial and angular mesh refinement as the outgoing flux is better 

approximated numerically. The relative error graph comparison of the flux profile shown 
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Figure 4.3: One Dimensional Scalar Flux, Transport vs. Diffusion 
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in figure 4.3 is given in figure 4.4.  

Figure 4.4 shows that both DD and LC are within 3% of the predicted flux of 

analytical diffusion except near the boundary where the error jumps to a little more than 

10%. The Step method has over predicted the analytical diffusion flux profile as seen in 

figure 4.3 with a larger error of about 13% maximum error near the edge of the core. 

These errors will decrease as the mesh is refined; however, for the homogenous isotropic 

fission reactor, the DD and LC methods always tend to better predict the flux profile 

while Step tends to over estimate the shape. Of course these results assume that the 

optical thickness is relatively small and well within the bounds of stability defined by 

figure 3.9 (Optical thickness comparison between LC and DD).  

For this test problem, the optical thickness fell at 24.4 for group two and 6.2 for 

group one.   This result suggests that the large optical thickness would introduce 

instabilities into both DD and LC for group two. Fortunately, the homogenous medium of 
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the parallelepiped reactor allowed for a stable solution to be achieved by the transport 

method since each cell essentially had no change in the optical thickness along each 

direction of the reactor (an optical thickness ratio of 1.0, which suggests from figure 3.9 

stable results). A problem will and does arise if the reactor becomes heterogeneous.  The 

calculation of the flux across the boundary will become unstable when the optical 

thickness ratio reaches the threshold suggested in figure 3.9. Further discussion on this 

subject is presented later in this chapter.  

The final analysis of the parallelepiped involves a discussion of convergence on 

the criticality eigenvalue K. The test problem run used the same reactor configuration and 

cross sections as previously mentioned, but used a fixed spatial mesh consisting of 30cm 

cubic cells (1000 total mesh cells). The maximum relative error of the flux profile for 

each method compared to analytical diffusion is listed in table 4.2.  The low relative error 

shown for DD and LC actually represents the maximum error along the interior mesh 

points of the reactor (neglecting the edge values). The outer most mesh point had a 

relative error of about 8% maximum on the edge. The cell meshing for this problem was  

picked based on these low relative errors for DD and LC. Any further refinement in the 

mesh will increase overall computational time. 

Method K 
Total 

Iterations
Time 
(sec) 

Convergence 
Acceleration 

Flux 
Tolerance

K 
Tolerance

Rel. % 
Error 

DD 1.13017 1893 569.10 No 1.00E-04 1.00E-04 2 
DD 1.13017 813 247.33 Yes 1.00E-04 1.00E-04 2 
Step 1.04095 209 62.06 Yes 1.00E-04 1.00E-04 25 
LC 1.12924 565 7789.70 Yes/initial guess 1.00E-04 1.00E-04 2 

Table 4.2: Parallelepiped Reactor Eigenvalue Test Results 
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The eigenvalue results of table 4.2 show that the reactor is supercritical. This is 

good because the criticality can always be lowered by adding neutron absorbers to the 

core to help suppress the flux profile. The larger error in the Step method accounts for the 

lower K value calculated.  The spatial quadratures were run under a less refined tolerance 

(10-4) to speed overall computation time. For example, a more refined tolerance on the 

eigenvalue and flux of 10-6 extended the total number of iterations to convergence out to 

3809 iterations and produced an eigenvalue of 1.12117.  In reactor calculations, the two 

digits following the decimal point in the K value are generally the most important values 

because they determine the reactors relative sub or super criticality at any given time. 

Therefore, to help speed calculations, a less refined tolerance was used with hopes of 

capturing three good digits in the K value.   

After looking at table 4.2, one will instantly see why run time is so important. The 

test problem was initially run with an initial guess of one for the flux and a small 

tolerance.  These values are listed as the first entry in table 4.2.  The code took 1893 

iterations to reach convergence to the specified relative tolerance. The number of 

iterations to convergence for this problem suggests that the LC method will take on the 

order of hours to compute an answer (approximately 8 seconds an iteration for a total run 

time of about 4.25 hours using table 3.1 information). This simple test shows that the 3D-

TRAN code requires some form of convergence acceleration other than the initial guess 

generator discussed in Chapter 3. A simple linear extrapolation/shooting method was 

implemented to help speed convergence. The remaining results in table 4.2 use the 

convergence acceleration routine developed for the 3D-TRAN code.  Further discussion 

of the convergence acceleration method will be provided later in this chapter. For now, it 
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is only necessary to show the requirement for some form of convergence acceleration 

routine to make the code more practical for use as a teaching tool.  

 

Homogenous Reactor Testing: Part 2, the Finite Right Circular Cylinder 
 

To continue our discussion of transport vs. diffusion theory, we examine the finite 

right circular cylinder reactor analyzed by Harman (2001). This test problem will serve 

three purposes. First, the 3D-TRAN cylinder mesh initialization routine can be tested for 

accuracy in modeling a cylinder in a Cartesian mesh. Secondly, the results from Harman 

provide a direct comparison for transport and diffusion theory predicted eigenvalues. 

Finally, the test problems will serve as a direct test to see if the isotropic fission source of 

the 3D-TRAN code is modeling the simple isotropic source developed by Harman (2001) 

in his diffusion code.   

The solution to the analytical diffusion equation (4.1) for a homogenous finite 

right circular cylinder is: 

 0
2.405 cosr zAJ

R H
π   

   
   

 (4.5) 

where A is the normalization constant, J0 is the Bessel function of order zero, R is the 

outer reactor radius and H is the core total height. This equation uses the extrapolation 

distance (as calculated in equation (4.3)) to correct the core radius and the core height to 

more closely approximate the transport vacuum boundary conditions.  

The transport code was modified to include a cylindrical initialization routine. 

Since the code was written in Cartesian coordinates, the cylinder model routine will only 

approximate the curved edge of the cylinder. This is accomplished by using the equation 

of a circle with origin fixed at some location in the mesh to determine if the center of a 
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computation mesh cell lies within the radius of the circle. If it does, the mesh cell is 

initialized as a reactor core cell, and appropriate cross sections and material properties are 

assigned. Otherwise, the mesh is left blank and initialized to zero. An example of a 

Cartesian mesh approximation to a circular curve is provided in figure B.1, appendix B.  

Also, a discussion of how to properly handle the boundaries in the transport code is 

presented. The end result is that as the Cartesian mesh is refined, the curved edge 

becomes more defined in the Cartesian mesh and will eventually approach the circular 

curve in the limit as the cell spacing becomes small. Of course, the onset of rounding 

errors in small numbers will introduce errors into the transport solution long before the 

limit is reached. Therefore, the circular mesh generation routine is a zeroth order 

approximation to a circle and does not conserve the mass and volume of a true right 

circular cylinder. This fact will introduce larger errors into the transport solution along 

the curved edge if the mesh cells are too large. These errors will be examined in the 

following test problem. 

The cylindrical reactor analyzed by Harman used the two group cross sections of 

table 4.1 with reactor dimensions referenced from Duderstadt and Hamilton (1976). The 

dimensions of the reactor are a height of 360cm and an outer radius of 120 cm 

surrounded on all sides by vacuum. As Harman refined his spatial mesh, his numerical 

diffusion solution approached the analytical diffusion solution, equation (4.5) (Harman, 

2001). These results were expected; therefore, the analytical solution will be used for a 

comparison of transport and diffusion. This reactor configuration was modeled in the 3D-

TRAN code with the added criteria of using the S6 angular quadrature set to approximate 

the angular integration. To conserve computer memory, the cylindrical reactor was 
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modeled using quarter core geometry with full symmetry boundaries at Xmin, Ymin and 

Zmin.  This allowed for refinement of the mesh to better approximate the cylindrical curve 

without exceeding computer memory or sacrificing speed.  

Figure 4.5 shows the two-dimensional, right cylinder, xy flux profile at a reactor 

core z value of 180cm predicted by the Linear Characteristic (LC) method.  The plot has 

been normalized to the maximum flux value. The LC model appears to represent the 

correct flux shape predicted by equation (4.5). The Diamond Difference (DD) and Step 

models predict the same behavior and are omitted for brevity. The jagged edge around 

the bottom of the flux profile indicates the jagged approximation to the curved cylindrical 

surface4. This profile contains mesh cells that are 12cm x 12cm in x and y and 9 cm in z 

                                                 
4 The graphing program used to plot the two dimensional flux profile artificially set the flux along the 
edges to zero because the 3D-TRAN code sets all values outside the approximated cylinder to zero. 
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(or meshing that is 10 x 10 x 20). As with the parallelepiped, a more direct comparison 

can be made by looking at a one-dimensional slice through the core starting at the axial 

centerline at a z location of 180 cm. These results are summarized in figure 4.6. 

 The graph shows that the numerical transport solution and the analytical diffusion 

solution are relatively close in shape. The cell size for this shape is the same as for figure 

4.5 above. As seen with the parallelepiped, the Step method over predicts the flux profile 

near the edge of the core. The DD and LC methods have predicted virtually the same flux 

profile with both coming very close to reproducing the analytical diffusion solution. A 

less refined mesh caused all the transport methods to over predict the diffusion solution 

along the edge of the reactor. At the mesh refinement of figure 4.6, the Step method still 

appears to require an even more refined mesh to better approximate the cylindrical 

diffusion solution. The radial relative error for figure 4.6 is shown in figure 4.7. 
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This graph (figure 4.7) shows that the DD and LC solution are within 10% of the 

diffusion solution. As expected, the LC method is within 5% of predicting the analytical 

solution and out performs both DD and Step. The relative error for all spatial quadratures 

increases over the last two mesh points starting around 102 cm radial.  This increase in 

error is caused by the approximation of the curved cylindrical edge in the Cartesian mesh.   

During testing, as the mesh was refined, the error along the boundary decreased as 

expected. The other possible error is the calculation of the extrapolation distance used to 

correct the boundary of the diffusion solution. The extrapolation is a transport 

approximation and is therefore subject to errors. The important feature of figure 4.7 is to 

note that the transport solution does approach the corrected analytical diffusion solution 

as the spatial mesh is refined and that the greatest error will lie along the approximated 

curved edge of the reactor. These results show that the cylindrical mesh generating 

routine of 3D-TRAN does work and will predict the correct flux profile for a cylinder. 
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The only problem is that a more refined mesh may be required to predict the flux more 

accurately near the curved reactor boundary.  

The solution to the axial flux profile is also very good. Figure 4.8 shows the axial 

flux profile at the same refined mesh size as figures 4.5 � 4.7. As in figure 4.6, the DD 

and LC methods predict the flux profile very well while the Step method over predicts 

the flux along the reactor edge.  As stated earlier, the refinement of the mesh will bring 

the Step method flux profile closer to the flux predicted by the analytical diffusion 

solution. Figure 4.9 shows the axial variation in the relative error using the analytical 

diffusion as the benchmark.  

Figure 4.8: Axial Flux Profile Comparison for Cylindrical Reactor 
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The graph shows the DD and LC methods are both within about 7% of the 

analytical diffusion solution. The LC also continues to perform well with relative errors 

consistently lower than DD and Step. Unlike the radial flux profile errors, the axial errors 

are more uniform and do not show signs of a sudden increase in the relative error near the 

edges of the core. Since the axial direction is modeled explicitly, these results are 

expected. The errors can be reduced by refining the mesh; however, the issue of computer 

memory limitations and loss of speed effect the final overall decision of the user to 

continue refining the mesh grid. For teaching purposes, the refined grids of figures 4.5 

through 4.9 show the correct reactor physics behaviors and show that the 3D-TRAN code 

can model a right circular cylindrical reactor.  
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The final discussion of the cylindrical reactor involves the eigenvalue calculation. 

As mentioned in the discussion of the parallelepiped, the convergence on the eigenvalue 

for the cylindrical reactor took a few thousand iterations. The linear extrapolation 

acceleration method mentioned earlier was used to speed calculations.  The results are 

listed in table 4.3. This table shows the three spatial quadratures with DD repeated twice, 

once with no acceleration for a timing comparison. The diffusion solution comes directly 

from Harman (2001) with the eigenvalue calculated numerically. The nodal spacing on 

the diffusion equations was 15 cm, which is close to the spacing chosen for the transport 

calculation. The relative error was taken for each spatial quadrature using the diffusion 

calculated K value as the comparison value. The results show that DD and LC 

quadratures very accurately match the predicted diffusion eigenvalue to within 0.07% 

with LC performing slightly better at 0.05%.  The Step method is within about 6% with 

errors caused by the coarseness of the spatial grid.  

These final results show that the isotropic fission source in the transport code is 

correctly modeling the fission source in the diffusion code.  Also, the results show that 

the eigenvalue power iteration technique utilized in 3D-TRAN is producing accurate 

results.  As for convergence acceleration, the technique does show substantial reductions 

in overall code iterations, especially when combined with the initial guess generator. This 

M ethod K
Total 

Iterations
Time 
(sec)

Convergence 
Acceleration

K & Flux 
Tolerance

Rel % 
Error in K

Diffusion 1.12109 83 NA NA 1.00E-05 NA
DD 1.12187 1449 351.74 No 1.00E-04 0.070
DD 1.12187 601 145.17 Yes 1.00E-04 0.070
Step 1.05909 208 52.45 Yes 1.00E-04 5.530
LC 1.12161 121 1501.6 Yes/initial guess 1.00E-04 0.047

Table 4.3: Cylinder Reactor Eigenvalue Test Results 
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was seen in the LC results where convergence was achieved in 121 iterations verses the 

1449 iterations DD required for a non-accelerated run. Assuming that LC takes about 

1449 iterations with no acceleration or initial guess, this is an improvement of 91%; 

however, the LC method still took 25 minutes to calculate the eigenvalue (far better than 

a projected 6 hours un-accelerated). These results suggest acceleration of the transport is 

definitely possible and will not have any adverse effects on the final answer if 

implemented correctly. The follow section will discuss the use of the linear extrapolation 

acceleration method and its overall stability in terms of homogenous problems.    

 

Convergence Acceleration of the Scalar Flux 
 

Before discussing the heterogeneous fission reactor, it is necessary to introduce 

the concept of convergence acceleration applied to the scalar flux profile in neutron 

transport. As briefly seen in the homogeneous reactor results, neutron transport solutions 

to the criticality eigenvalue problem run over many iteration due to the slow convergence 

of the scalar flux and the eigenvalue. As seen in table 4.3, the homogenous cylinder 

reactor required 1449 iterations to converge to a relative tolerance of 10-4. In more 

refined tolerances, this iteration number will at least double or triple as a minimum. The 

use of the LC method alone will require many hours or even days to reach a final 

converged solution. This result is unacceptable and needs improvement. The need for 

acceleration of the solution to its final tolerance is necessary to decrease overall run times 

and make the 3D-TRAN code more viable as a teaching tool.  

Convergence acceleration provides a means for reducing overall run time and 

achieving a converged solution in less iterations. For reactor eigenvalue problems, the 
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non-accelerated convergence behavior is slow and very asymptotic in nature. To show 

this behavior, a test problem was run using the same geometry and material cross sections 

as the right circular cylinder reactor demonstrated in figures 4.5 � 4.9. The behaviors of 

the center most cell of the reactor and an edge cell were graphed to examine the slow 

convergence behavior over number of iterations. The results are graphed in Figures 4.10 

and 4.11.  

Figure 4.10 shows the center cell of the cylindrical reactor where the flux is 

maximized.  The initial iteration begins with a flux value of 1.0, which continues to build 

with each iteration until reaching a point where marginal improvement in the flux value is 

achieved.  This asymptotic convergence behavior is very slow as seen in the graph. The 

second type of convergence behavior seen in the cylindrical homogenous reactor 

calculation is shown in figure 4.11. This graph shows the scalar flux in an edge cell of the 
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reactor where the flux is considered at a minimum. The flux in this cell is also initialized 

to 1.0 and builds very quickly then diminishes below the converged solution before 

slowly and asymptotically rising to the final converged answer. The end result is that 

both cells, the center cell and the edge cell, each behave asymptotically in the limit as the 

number of iterations becomes large. These behaviors suggest that convergence 

acceleration by some form of linear extrapolation may be achieved.  

Lewis and Miller (1993) suggest that a simple extrapolation technique applied to 

the scalar flux profile at the end of each iteration will improve overall convergence speed 

by reducing the total number of iterations required. The suggested method utilizes 

information from the old or previous iterate as well as the new iterate. The equation for 

acceleration of the flux is as follows: 

 ( )1i i i iφ α φ φ φ+ = − +%  (4.6) 

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration Num ber

C
or

e 
Ed

ge
 C

el
l A

ve
ra

ge
 S

ca
la

r F
lu

x 
Va

lu
e

Accelerated

No Acceleration

Tolerance: 
      K       = 1.0E-5
      F lux  = 1.0E-6

Converged in 
1048 Iterations

Converged in 
3808 Iterations

Figure 4.11: Convergence Behavior of Scalar Flux for Reactor Edge Cell 



77  

 

where α is an over-relaxation factor, iφ%  is the unaccelerated new flux iterate, iφ is the 

previous flux iterate, and 1iφ+  is the accelerated new flux iterate. The over-relaxation 

factor is suggested to fall between one and two for improved convergence (Lewis and 

Miller, 1993). The implementation of this convergence acceleration technique yielded 

marginal improvements in the convergence on the scalar flux. The number of iterations 

required to achieve the converged answer was reduced by only about 30% using an over-

relaxation factor of two. This result was good, but there is a better technique that still 

utilizes equation (4.6), an iterative shooting method. 

The iterative shooting method applies the linear extrapolation method of equation 

(4.6), but does not implement the acceleration every iteration. Instead, the shooting 

method applies a larger over-relaxation value (greater than two), but performs the 

extrapolation method only every couple of iterations. The shooting technique takes 

advantage of the asymptotic convergence behavior seen in figures 4.10 and 4.11 by using 

the slope of the previous iterate and the unaccelerated iterate to project a new iterate 

value further along the iteration curve then the unaccelerated value. The only problem is 

determining the optimum over-relaxation factor as well as the optimum number of 

iterations to perform before shooting an accelerated iterate. This initially proved to be 

problematic. The solution to finding optimum performance stemmed from an analysis of 

the cylindrical reactor test problem used to generate figures 4.10 and 4.11.  

The cylindrical test problem was run, keeping all spatial grids, material 

parameters, and relative tolerances constant. The only values changed were the over-

relaxation constant and the number of iterations to perform before shooting a new flux 
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iterate. The tests began by fixing the number of iterations to perform before shooting and 

then varying the over-relaxation parameter, α.  The key in this analysis was to identify 

the over-relaxation parameter that provided the minimum number of iterations to 

convergence of the solution. The analysis continued by increasing the shooting iteration 

number and finding the new over-relaxation constant. The results are summarized in 

figure 4.12.  

The graph provides the optimum over-relaxation parameter for any given number 

of iterations to perform before shooting a new accelerated iterate (for this test problem). 

The method is stable for any over-relaxation value that is below the stability line in figure 

4.12 for any fixed shooting iteration number. The method quickly becomes unstable if 

alpha exceeds the optimum over-relaxation parameter for any given shooting iteration 

number. This instability is caused by over shooting the flux iterate where the convergence 

Figure 4.12: Optimum αααα per Shooting Iteration Number.  
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behavior in the computational cell is disrupted beyond recovery. The shooting method 

linear extrapolation method utilizes the fact that as the accelerated flux iterate is shot, the 

code performs a few unaccelerated iterations to allow the solution to settle down into its 

normal convergence pattern. If shooting occurs before this happens, the convergence 

behavior in the cell has not settled down and the new accelerated iterate will be based on 

a slope that may shoot the new answer in the wrong direction. As this continues, the 

behavior begins oscillating until convergence to a stable solution is completely destroyed.  

Now, referring back to the test problem used to define figure 4.12, the optimum 

alpha values along the stability line produced a close distribution of final iterations to 

problem convergence. In other words, as the alpha parameter is varied along the stability 

line, the number of iterations required to converge to the final solution was within 1.5 

standard deviations (or 25 iterations) of the average.  The average iteration to 

convergence was 433 at a relative tolerance of 10-4 for both the flux and the eigenvalue. 

The unaccelerated converged solution at this tolerance was 1449 iterations. Therefore, the 

linear extrapolation shooting method improved overall convergence speed by about 70%. 

This result is better than achieved before with the linear extrapolation method and better 

meets the goals of this project to provide a usable teaching tool for students to learn 

reactor/neutron particle physics.  

As a final test, the relative tolerance was set back to 10-6 for the flux and 10-5 for 

the eigenvalue for the cylindrical reactor problem. The accelerated cell convergence 

behaviors are graphed in figures 4.10 and 4.11 as a direct comparison to the 

unaccelerated convergence behavior.  Here, the shooting extrapolation acceleration 

method achieved a 72% increase in convergence speed. 
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The results presented in this section show the value of having a convergence 

accelerator on the transport solution when eigenvalue calculations are desired. Although 

the convergence technique employed here was analyzed for homogenous reactors, the 

technique can be applied to heterogeneous reactors. The only questions that remain are 

how well will the accelerator perform in a heterogeneous problem and what is the shape, 

if definable, of the optimum over-relaxation parameter curve. These questions are not 

answered in this research and provide a starting point for future analysis on convergence 

acceleration applied to neutron transport criticality calculations. The convergence 

accelerator developed in this research is used on the remaining heterogeneous reactor 

problems in this chapter to provide some initial data for its performance with these types 

of reactor problems.  

 

The Heterogeneous Reactor  
 

In the previous section, the performance of the neutron transport homogenous 

reactor was compared to the analytical homogenous reactor diffusion solution.  The 

neutron transport code performed very well in reproducing flux profiles that agreed with 

the analytical diffusion solution. In this section, the heterogeneous reactor is explored. 

The use of an analytical diffusion comparison is omitted due to complexity in defining a 

heterogeneous, analytical or numerical diffusion solution. Instead, the neutron transport 

based 3D-TRAN is used to generate sample heterogeneous problems the student may find 

interesting in terms of demonstrating reactor physics principles and practices. These 

problems are designed to show how the 3D-TRAN code can be utilized as a teaching tool 
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to help students see and understand the neutron flux behavior inside a multi-region 

reactor core.  

The problems of interest consist of modeling a reactor unit fuel cell, a two-region 

fuel assembly problem, and two full size reactor core fuel loading configurations. The 

unit fuel cell serves as the method for determining the region dependent homogenized 

cross sections used in the remaining reactor test problems. The two-region assembly 

problem will demonstrate the source-sink coupled relationship between two fuel 

assemblies of different weight percent uranium-235.  The final core loading configuration 

problems will demonstrate some basic principles of nuclear fuel management. All of 

these tests are designed based on the properties of a pressurized water reactor (PWR) core 

configuration used in most of the present day, commercial nuclear power utilities.  

 

 

The Unit Fuel Cell 
 

The commercial nuclear reactor is made of many components that are engineered 

to fit together in such a way to optimize the fission process of uranium-based fuel. The 

fuel is bundled together in rods that are held together by many support structures called 

fuel assemblies. These assemblies consist of a reproducible matrix of fuel rods that are 

arranged in a square lattice structure at equal distances from each other. These fuel rods 

contain the uranium fuel pellets that drive the nuclear fission reaction. Therefore, the fuel 

rod itself is the fundamental fuel element in a nuclear reactor.  

The basic physics of the fuel rod can be examined by assuming that the fuel rod 

dimensions are small compared to the reactor as a whole. In many cases, this is true since 
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fuel rods are only about 0.4 inches in diameter while the core may be about 240 feet in 

diameter. The core is generally about 12 feet tall with fuel rods being equally as long. If 

we examine a specific point on a fuel rod in the center of the core about half way up the 

core height, one can assume that the physical behavior of the neutron flux at this location 

is relatively constant in the axial direction. The fuel rod sits in a lattice of fuel rods that 

are, for the most part, identical in composition and dimensions. The mean free path of the 

neutrons is generally on the order of the distance from one fuel rod to the next adjacent 

fuel rod.  Therefore, the fuel rod at this point (half way up the height) in the core can be 

reduced to a unit cell calculation in which the height of the cell is one (for three-

dimensional calculations) and the sides of the cell consist of a square with dimensions 

greater than the diameter of the fuel rod plus some of the surrounding water or moderator. 

Figure 4.13 shows a typical unit fuel cell.  

 

 

Figure 4.13: Unit Fuel Cell using TMI dimensions 
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For this problem, the Three Mile Island (TMI) initial fuel loading dimensions 

were used to develop the test problem dimensions of the fuel rod (Feltus, 1995).  These 

dimensions are also listed in figure 4.13 to show the relative locations on the fuel cell. 

The fuel cell pitch is equal to one side of the square unit cell. The diagram was simplified 

from its original form by removing the gap that usually exists between the cladding and 

the fuel pellet. This can be done because one can assume that little neutron interaction 

occurs in the gap void space between the cladding and the fuel pellet.  The problem 

therefore reduces to a three region heterogeneous problem. Symmetry boundary 

conditions are used to simulate the existence of the unit fuel cell in a lattice of equal fuel 

cells in the reactor core. These ideal conditions now allow for simple examination of the 

neutron flux inside the fuel rod in the radial direction starting at the center of the fuel cell.  

The cross sections chosen for this test problem consist of a set of microscopic 

four-group cross sections referenced from table 7-1 of Duderstadt and Hamilton (1976)5. 

These cross sections allowed for development of macroscopic cross sections based on the 

weight percent (w/o) of uranium 235.  The fuel chosen consisted of 2 w/o, 3 w/o, and 4 

w/o fuel.  The input data is summarized in Appendix E for brevity. The cylinder 

estimation routine discussed in the homogenous cylinder reactor section was used to 

approximate the curved boundary of the cladding and fuel pellet. Quarter pellet symmetry 

was used to model the fuel cell by taking advantage of symmetry and to better refine the 

curved boundary. A relative tolerance of 10-4 was chosen for the flux and eigenvalue 

convergence. 

                                                 
5 These are ideal cross sections and are not assumed to be completely accurate in capturing the cross section 
behavior in a real reactor. These were chosen merely to demonstrate general reactor physics behaviors.  
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Figure 4.14 shows the one dimensional flux profile for 2 w/o fuel for the Step, 

DD, and LC spatial quadratures. The graph shows the flux profile decreasing toward the 

edge of the fuel pellet until reaching the outer surface of the cladding. At this point, the 

flux increases slightly in the LC and DD methods indicating more scatter present near the 

cladding/moderator interface. The Step method does not show the magnitude of the 

increase in the flux at this boundary and appears to underestimate the flux profile through 

the cladding to moderator interface. The moderator has a higher scatter cross-section than 

the cladding and therefore should produce the increase in flux at the fuel rod boundary as 

seen by the DD and LC methods.  The magnitude of the flux increase will be purely 

dependent on the cross-section data used in the problem.  

The flux profile in a unit fuel cell also provides another valuable piece of 

information, the average flux in each region. For heterogeneous reactor problems, the 

ability to model every fuel cell in the reactor is not desirable. Instead, unit fuel cells are 
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used to generate cell homogenized cross section data to simplify the input to large reactor 

numerical models. The cell homogenization process requires the region scalar average 

flux to generate flux weighted homogenized cross sections. The homogenized cross 

section can then be calculated using the following equation over the unit fuel cell:  

 xFg Fg xCg Cg xMg Mg
xg

Fg F Cg C Mg MV V V
φ φ φ

φ φ φ
Σ + Σ + Σ

Σ =
+ +

 (4.7) 

where for the fuel(F), cladding(C) and moderator(M): 
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The subscript g refers to the energy group and the subscript x on the cross-section refers 

to any cross section of interest. The 3D-TRAN code was modified to include this 

calculation over a unit fuel cell. The homogenized unit fuel cross-sections for the 2 w/o 

fuel are given in table 4.4. 

The unit fuel cell test problem was also run for 3 w/o and 4 w/o fuel. The flux 

profiles were similar to figure 4.14 in appearance, but differed slightly in the magnitude 

of the flux in each region. Of course, this flux variation is caused by the change in the 

fuel cell cross sections for each problem. The higher w/o fuel showed an increase in the 

flux profile in the fuel with a slightly elevated rise in the flux at the cladding/moderator 
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interface. The results of the 3 and 4 w/o fuel cell homogenization are provided in table 

4.4 also.  

The cell-homogenized cross-sections were calculated using all three spatial 

quadratures. All three methods produced homogenized cross sections that were in 

agreement with each other out to three decimal places. The tolerance run on the cross 

sections was only 10-4;therefore, the three spatial quadratures are in agreement out to the 

convergence tolerance limit.  For these sample problems, this tolerance was considered 

good enough since actual real reactor cross-section data was not being used. As a final 

summary on the unit fuel cell problem, table 4.5 lists the eigenvalues for each type of fuel 

and compares the number of iterations to convergence, both accelerated and 

unaccelerated. 

2 w/o 1 2 3 4
ΣΣΣΣ t 1.2276E-01 2.8820E-01 4.3366E-01 1.5311E+00
ν Σν Σν Σν Σ f 1.0066E-02 4.9549E-04 7.7312E-03 1.5234E-01
ΣΣΣΣ g-g+1 5.1044E-02 7.3730E-02 7.6674E-02 0.0000E+00
σσσσ gg 6.2846E-02 1.9952E-01 3.3657E-01 1.4336E+00
3 w/o
ΣΣΣΣ t 1.2277E-01 2.8821E-01 4.3650E-01 1.5857E+00
ν Σν Σν Σν Σ f 1.0209E-02 7.4320E-04 1.1575E-02 2.1982E-01
ΣΣΣΣ g-g+1 5.1047E-02 7.3732E-02 7.6742E-02 0.0000E+00
σσσσ gg 6.2845E-02 1.9956E-01 3.3676E-01 1.4563E+00
4 w/o
ΣΣΣΣ t 1.2277E-01 2.8822E-01 4.3933E-01 1.6367E+00
ν Σν Σν Σν Σ f 1.0351E-02 9.9082E-04 1.5405E-02 2.8197E-01
ΣΣΣΣ g-g+1 5.1053E-02 7.3734E-02 7.6812E-02 0.0000E+00
σσσσ gg 6.2839E-02 1.9960E-01 3.3696E-01 1.4779E+00

Energy Group

Table 4.4: Homogenized Cross-Section Data (cm-1) by w/o U-235 Fuel 
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As an example, the data in table 4.5 only shows the DD spatial quadrature values. 

The LC numbers identically matched DD out to the tolerance limit while the Step method 

slightly under predicted the eigenvalues. For this problem, the DD and LC answers were 

considered �correct� and used for the remaining test problems in this chapter.  This 

assumption is based on the fact that both DD and LC were within the optical thickness 

ratio limit (summarized in figure 3.9), and is therefore considered a stable neutron 

transport solution to the unit fuel cell test problem. 

Table 4.5 shows that as the w/o of fuel is increased, the eigenvalue also increases. 

This result is expected and does show that more thermal based fissions occur in uranium-

235 fuel with a higher percentage of U-235 concentration. At the specified tolerance of 

10-4, the DD spatial quadrature required about 880 iterations to converge. With the 

addition of acceleration, the overall required number of iterations to convergence dropped 

to only about 320 iterations. This result shows a relative increase in speed by about 64%.  

This result is surprisingly good since the convergence accelerator was designed and 

optimized on the homogenous reactor problems presented earlier in the chapter. The LC 

and Step methods were not examined for acceleration, although the LC method is 

expected to perform as well as DD since it took about the same number of unaccelerated 

iterations to converge to a solution. If DD is used as the initial guess, then the 

performance for LC is expected to increase to about 85% faster than the unaccelerated 

Fuel K
Accelerated 

Iteration
Unaccelerated 

Iteration
Relative % 

Increase in Speed
2 w/o 1.101 319 883 63.9
3 w/o 1.188 316 879 64.1
4 w/o 1.238 317 876 63.8

Table 4.5: Eigenvalue and Performance data for Uranium Based Fuel  
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solution. This estimate is based on all the evidence presented thus far on the initial guess 

generator in combination with convergence acceleration.  

 

Two-Region Assembly Problem 
 

The previous section discussed how the unit fuel cell test problem can be used to 

generate flux weighted homogenized cross sections. These cross sections are 

homogenized over the dimensions of the unit fuel cell. Now, if we construct a fuel 

assembly consisting of a group of unit fuel cells containing one of the fuel types listed in 

table 4.4, the homogenized cross sections for that unit cell can be used to describe the 

entire assembly.  Of course, this ideal assembly neglects any support structure or neutron 

absorbers that may be present in a real assembly.  

For this test problem, two different fuel assemblies were used, 2 w/o and 3 w/o U-

235. Each assembly assumes that there are 225 fuel cells arranged in 15 x 15 matrix. The 

dimension for one side of the square assembly, called the assembly pitch, is 21.6cm 

(rounded up to 22cm for the test problem). The assemblies are also approximately 12 feet 

high or 364 cm tall. The test problem is set up to model a small section of the reactor core 

where two assemblies of different w/o are arranged next two each other. The pattern 

chosen for the assembly arrangement consists of a checkerboard design common in most 

commercial power reactors. For ease of modeling, the assemblies are arranged in a four 

square pattern shown in figure 4.15. The boundary conditions for this problem are taken 

through the xy plane centerline of the outer assemblies to take advantage of symmetry 

boundary conditions available in a reactor core consisting of the repeated checkerboard 

pattern of figure 4.15. The height of the assemblies was reduced to 22 cm in order to 
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examine a �cube� with z maximum and minimum boundaries taken as ideal symmetry 

conditions. The resulting test problem models an ideal assembly arrangement in the 

center of the reactor core.  

The problem was checked for convergence, as the spatial mesh was refined. The 

dimensions of this problem are much larger than the unit fuel cell and mesh refinement 

was expected to affect the convergence of the eigenvalue and flux profile. Figure 4.16 

shows the peak to average flux profile for the assembly arrangement of figure 4.15. The 

peak to average flux was chosen because fuel management techniques usually involve 

attempts at designing fuel configurations that reduce the peak to average power ratio as 

small as possible to flatten the power shape across the core (Cochran, 1990). Since the 

Figure 4.15: Checkerboard Two-Region Assembly Problem Configuration 
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reactor power is proportional to the flux, the general behavior of the peak to average flux 

ratio should be consistent with the peak to average power ratio. 

Figure 4.16 shows that as the mesh is refined, the DD and LC methods tend to 

converge towards a peak to average ratio of about 1.92.  The Step method is under 

predicting the peak to average ratio, but appears to be converging towards the same value 

as DD and LC. The refinement of the mesh better resolves the peak flux value and 

thereby causes the slower convergence to the peak value. The average flux changes very 

little as the mesh is refined. Therefore, convergence on the peak ratio value is expected 

with continued refinement of the mesh.  

Figure 4.17 shows the convergence of the eigenvalue over the two-region 

assembly problem. The graph shows that DD and LC tend to converge on an eigenvalue 

of 1.2157. The LC method has predicted a value of 1.2157 in the initial coarse mesh 

refinement and tends to oscillate around this answer since the solution convergence has 
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been truncated by the smaller problem relative tolerance of 10-4. The DD method 

eventually converges in on this eignevalue to within three digits after the first mesh 

refinement. The Step method also appears to be converging to the 1.2157 eigenvalue; 

however, the convergence is relatively slow as expected since the method is linear in its 

order of error reduction.   

The convergence behavior for the DD and LC methods is presented in table 4.6. 

This table shows both the accelerated and unaccelerated number of iterations to 

convergence for both methods. The LC method also used the DD initial guess generator 

routine to help reduce the number of iterations to convergence even further.  The Step 

method was not evaluated since its overall iterations to convergence very close mimicked 

the DD convergence behavior. The mesh refinement factor of 16 was not explored 

because the overall problem run time was becoming very long. The LC method took 

about 2900 seconds to calculate the accelerated (refinement of 16) answer. If the 
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Figure 4.17: Eigenvalue Convergence Behavior for Two-Region Problem 
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unaccelerated LC answer was run, it is estimated that the code would take well over 12 

hours to calculate an answer assuming the number of iterations to convergence was at 

least 150. The important feature of table 4.6 is that the convergence accelerator only 

increased the DD calculation speed by about 16%.  The unaccelerated convergence was 

relatively quick (i.e. less than 150 iterations). The convergence accelerator tends to 

perform better when a larger number of unaccelerated iterations is required to converge 

to an eigenvalue.  The use of DD as the initial guess appears to have contributed to the 

relatively few iterations required by LC to converge since the answers for each method 

were virtually identical within the first three digits of the solution.  

Finally, the two dimensional LC flux profile for the two-region assembly problem 

is presented in figure 4.18. This graph shows the relative difference in the flux between 

each region. The lower flux is present in the lower w/o fuel (2 w/o). The higher w/o fuel 

(3 w/o) has a higher flux profile in its region because of the higher concentration of U-

235 causing more thermal fissions. The higher w/o fuel tends to drive the fission reaction 

Mesh Refinement 
DD K

Iterations to 
Convergence

Accelerated 
Iterations to 
Convergence

Relative % 
Increase in 

Speed
2 1.2143 119 106 10.9
3 1.2158 137 114 16.8
8 1.2156 144 121 16.0
16 1.2158 NA 129 NA

Mesh Refinement 
LC
2 1.2157 117 22 81.2
3 1.2160 136 18 86.8
8 1.2158 141 26 81.6
16 1.2158 NA 10 NA

Table 4.6: Two-Region Assembly Convergence Data 
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and acts more like a source. The lower nearby w/o fuel tends to absorb more neutrons and 

thereby appears to look like a neutron sink for the higher w/o fuel.  These results are 

expected and demonstrate the source-sink neutron flux relationship between different w/o 

fuels. This relationship serves as the foundation for fuel management practices that utilize 

this information to try and optimize core-loading schemes by flattening the overall flux 

profile across the core (Cochran, 1990). The next section will demonstrate some basic 

fuel management principles using the 3D-TRAN code to determine the best optimum 

core configuration. 
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Basic Fuel Management: Reactor Core Fuel Loading Patterns 
 

In the previous section, a two-region assembly problem was presented to test the 

3D-TRAN code with a heterogeneous reactor problem and to show the general neutron 

physics behavior between adjacent fuel assemblies of different fuel compositions. The 

source-sink philosophy of developing reactor core fuel loading patterns uses the idea that 

lower w/o fuel absorbs neutrons from nearby higher w/o fuel. This knowledge of fuel 

interaction allows nuclear fuel mangers to develop fuel loading schemes that reduce 

power peaks in the core and help maintain a flatter power distribution. The flatness of the 

power distribution is measured based on the peak to average power ratio (an average core 

ratio close to one indicates a relatively flat distribution). A flat power distribution is 

desirable because the fuel will burn more uniformly throughout the core allowing for the 

maximum possible energy to be extracted from the fuel (Cochran, 1990). This philosophy 

is very economical and efficient for nuclear power reactors run by utility companies.  

In order to efficiently examine the peak to average power ratio, the 3D-TRAN 

code was modified to include a routine that calculates the fraction of the total core 

average power in each assembly. First, the average power per assembly is defined as 

follows:    

 1

N

f fj j j
j

E V
PP
N N

φ
=

 Σ 
= =

∑
 (4.11) 

where P represents the total core power, Ef  represents the energy per fission, N represents 

total number of assemblies in the core, fjΣ represents the average fission macroscopic 

cross section for the jth assembly, jφ represents the average scalar flux for the jth 
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assembly, and Vj represents the volume of the jth assembly. The fraction of average 

power produced by assembly j then becomes: 

 

1

j fj j
j N

fj j
j

P N
NP

P
φ

φ
=

Σ
= =

Σ∑
. (4.12) 

Equations (4.11) and (4.12) are referenced from Chapter 5 of Cochran (1990). These 

equations give 3D-TRAN the capability to output relative power maps that will directly 

show which assemblies in the core are higher or lower to the average core power. Peak 

power locations can then be easily identified and associated with a given assemblies fuel 

properties. This capability is essential in developing reactor fuel loading schemes that 

reduce peak power levels in the core.   

In this section, the 3D-TRAN code is used to model two basic fuel loading 

patterns. These patterns are the OUT-IN loading scheme, and the low-leakage core 

loading (Cochran, 1990). These loading configurations are explained in more detail in the 

following sections. The reader is referred to Chapter 6 of Cochran (1990) for more details 

regarding general fuel management practices. 

 

OUT-IN Fuel Loading Pattern 
 

The first fuel pattern of interest is called the Out-In Loading scheme (Cochran, 

1990). The reactor is divided into X batches with each batch containing approximately 

the same number of assemblies. The lowest w/o fuel is placed in a circle in the center of 

the core. The next highest w/o fuel is placed in a ring around the center batch. This 

continues until the highest w/o fuel surrounds the core along its perimeter. The main 

advantage to this loading scheme is that the peak power is lowered and shifted from the 
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center of the core out towards the edge of the core. The main disadvantage of this scheme 

is that the higher w/o fuel along the perimeter generates higher power and thus higher 

neutron levels that strike the pressure vessel containing the core. This is not desirable and 

will cause radiation damage to the pressure vessel6.  

For this test, the cross section data of table 4.4 is used to model homogenized fuel 

assemblies containing 2 w/o, 3 w/o, and 4 w/o U-235. Each fuel assembly is 22 cm 

square and 364 cm high. The assemblies were placed in a quarter core configuration.  

Symmetry boundary conditions were used to simulate a quarter core symmetric fuel 

loading. A symmetry boundary was also placed half way down the height of the fuel 

assemblies since no axial variations in the fuel composition are present in this problem. 

The remaining boundaries were chosen as vacuum7.  

Figure 4.19 shows the fuel assembly configuration map. The core configuration 

                                                 
6 Once again, the reader is referred to Cochran (1990) for more details on low leakage core configurations 
and their importance. 
7 In reality, the core is surrounded by a reflective material designed to reflect a percentage of the neutrons 
exiting the reactor along the perimeter back into the core. This addition boosts the neutron flux along the 
core perimeter and helps to reduce overall core leakage.  

Figure 4.19: Quarter Core OUT-IN Fuel Loading Configuration 
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map was designed based on a total of 109 fuel assemblies with 37 assemblies in batch 

one, 36 assemblies in batch two, and 36 assemblies in batch three. The batch numbers in 

figure 4.19 correspond to a specific w/o of fuel assigned as listed in the map legend. The 

problem was run using a mesh size that split each assembly in the xy plane into four sub 

cells. This was done to maintain smaller calculation cells for DD and LC. The final 

spatial mesh consisted of a 12x12x20 mesh so that all cells were 11cm by 11cm in xy and 

9.1 cm in z.  

The OUT-IN loading pattern was run using all three spatial quadratures. The 

resulting criticality eigenvalues for this core are listed in table 4.7.  Both DD and LC 

predict the reactor cores eigenvalue to within four digits. Once again, the two methods 

are in agreement out to the relative convergence tolerance of 10-4. The Step method under 

predicted the eigenvalue with a relative percent difference from Step and DD of 8.0%. 

The number of iterations to convergence is also presented to show improvements made 

by the convergence acceleration method developed earlier in this chapter. The DD 

method saw the largest increase in speed at 72%. The Step method saw a 60% increase. 

These results tend to support the fact that the linear accelerator routine appears to perform 

best when calculating problems requiring a large number of iterations. This tendency has 

been seen on several occasions in this chapter (i.e. table 4.6 and table 4.5). A non-

Method K
Iterations to 
Convergence

Accelerated 
Iterations to 
Convergence

Relative % Increase 
in Speed

DD 1.17959 914 256 72.0
Step 1.08552 485 198 59.2
LC 1.17982 NA 138 NA

Table 4.7: OUT-IN Core Eigenvalue Comparison 
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accelerated run was not performed for LC because the accelerated run time at 138 

iterations took 17,787 seconds or about 5 hours. If the number of unaccelerated iterations 

required to convergence is close to DD, the LC method would take about 33 hours to run. 

The DD run took approximately 338 seconds accelerated and 1222 seconds 

unaccelerated. Therefore, since the two methods were close in agreement with each other, 

the DD method would be used instead of the LC method in order to produce results in 

less time. The accuracy of LC is still considered to be better than DD; however, at the run 

times shown so far, full reactor problems will take hours to run under the LC method. 

The LC method will be better utilized for reactor type problems where the fuel contains 

neutron absorbers and DD requires a very large spatial mesh size to maintain stability. 

Figure 4.20 shows the average power per assembly for the OUT-IN core 

configuration using the LC method. The power map corresponds directly with the 

assembly fuel locations shown in figure 4.19. The DD method reproduced virtually the 

same numbers with agreement between the first two digits of LC for every power number 

0.8606 0.8666 0.7747 0.4228

1.5296 1.6271 1.7135 1.3894 0.5368

0.8516 1.0793 1.9046 1.9756 1.3890 0.4226

0.4690 0.6478 1.0683 1.9039 1.7124 0.7741

0.2822 0.3895 0.6475 1.0784 1.6254 0.8656

0.2043 0.2821 0.4686 0.8505 1.5274 0.8593

Figure 4.20: OUT-IN Average Power per Assembly Map using LC 



99  

listed in the map.  This map shows that the peak to average power ratio falls in the second 

batch of fuel very close to the edge of the core. The max power ratio is 1.9756. The 

center of the core shows reduced power levels. In fact, the center is severely depressed 

with only about 25% of the average power being produced in these assemblies. From a 

fuel management standpoint, this configuration is highly lopsided with most of the power 

in the core being produced along the outer edge of the core. The wide spread in the NP 

numbers from 0.2043 out to 1.9756 (difference of 1.7713) also show indications that the 

power profile for this core is not very flat. Therefore, according to fuel management 

principles, the core should be rearranged to yield a more even burn up rate for the fuel 

across the entire core.   

The lopsided power distribution is accentuated in figure 4.21 which shows a two 
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dimensional surface plot of the flux profile across the core. Since the power is 

proportional to the flux, figure 4.20 does provide a good visual representation of the 

power profile.  The plot shows a quarter core profile in the same orientation as figures 

4.19 and 4.20. The profile shows the flux depression in the center of the core and the 

peak flux formation along the edge of the core. The peak is directly consistent with the 

location of a batch of high-enriched fuel along the back corner of the core where the 

�curved� (actually jagged) surface is located.  The next section will discuss a more 

elegant fuel arrangement that reduces the peaks and troughs associated with the OUT-IN 

fuel pattern.  

 

The Low-Leakage Fuel Loading Pattern 
 

The second and final fuel-loading pattern demonstrated with 3D-TRAN is called 

the low leakage core-loading scheme. This fuel-loading pattern is designed based on X 

batches of fuel as with the OUT-IN fuel loading scheme. For the test case, the fuel 

consists of the same three batches of fuel consistent with the previous OUT-IN core 

loading.  The core configuration is modified to include a checkerboard fuel arrangement 

inside the reactor core. This configuration places higher w/o fuel next to lower w/o fuel 

as demonstrated with the two-region assembly problem earlier in this chapter. The 

checkerboard pattern, as with the OUT-IN configuration, places the highest w/o fuel 

along the periphery of the core. The low leakage core modifies the checkerboard pattern 

by moving the highest w/o fuel off the core perimeter and placing it approximately one 

row inside the edge. The outer ring of assemblies is replaced with lower w/o fuel to 
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reduce the number of neutrons produced along the edge of the core thereby reducing the 

neutron leakage out the sides of the core.  

This test problem uses the same spatial meshing, assembly dimensions, and core 

dimensions as the OUT-IN test. The same cross sections for the 2 w/o, 3 w/o, and 4 w/o 

fuel are also used. The DD spatial quadrature was used to calculate the core eigenvalue. 

The Step and LC methods were not implemented for this problem. This test problem is 

merely a demonstration of fuel management techniques and will be used solely to show 

how the 3D-TRAN code can be used to aid the student in designing reactor core fuel 

loading patterns. The comparison of Step, LC, and DD made with the OUT-IN core 

showed that LC and DD were virtually identical in eigenvalue and power profiles. 

Therefore, the DD method was chosen primarily based on its calculation speed and its 

proven agreement in accuracy with LC.   

For this test problem, the fuel in the OUT-IN core configuration, given in figure 

4.19, was moved around in the core to yield the new core configuration of figure 4.22. 

The new configuration was picked through a trial and error process of picking a core 
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2 3 2 1 3 2

1 1 2 2 3 1

2 1 1 3 3 2

1 2 1 2 3 1

Figure 4.22: Quarter Core Low Leakage Fuel Loading Configuration  

1  = 2 w/o 
2  = 3 w/o 
3  = 4 w/o 
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configuration and running the 3D-TRAN code to identify peak power regions. The power 

peaks were reduced by transplanting the higher-powered assemblies to regions of the core 

where the power was low. The resulting eigenvalue for this configuration was 1.1873. 

This is only a difference of 0.0077 or a 0.7% increase from the DD predicted eigenvalue 

of table 4.7 for the OUT-IN core loading; however, the core power profile is completely 

different.  

Figure 4.23 shows the average power per assembly for the low leakage core. This 

profile shows that the peak to average power ratio dropped from 1.9756 to 1.6429. The 

location of the peak also shifted inward by one assembly when compared to figure 4.20. 

The flux profile in the center of the core is also greater than the average power, which is a 

significant improvement over the OUT-IN core-loading scheme where the power is 

severely depressed below the average power. The assemblies along the perimeter of the 

core are also producing less power than the OUT-IN power configuration of figure 4.20. 

The neutron flux is reduced thereby producing a lower leakage core than the OUT-IN 

scheme.  In general, the low leakage fuel-loading scheme produces a better core wide 

power shape and will consume fuel more efficiently than the OUT-IN loading scheme.  

0.3989 0.4951 0.3237 0.2108

1.2911 1.2252 1.0448 0.6587 0.1907

1.6134 1.6098 1.5291 0.9279 0.6581 0.2105

1.1583 1.1534 1.6429 1.5277 1.0432 0.3230

1.3787 1.0542 1.1522 1.6069 1.2224 0.4938

1.0274 1.3776 1.1561 1.6094 1.2875 0.3977

Figure 4.23: Low-Leakage Average Power per Assembly Map using DD 
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As a final note, the neutron flux profile for the low leakage core is given in figure 

4.24. The mixing of fuel assemblies inside the core produces a more jagged flux profile 

than the OUT-IN loading pattern of figure 4.21.  The flux depression at the center of the 

core is caused by the placement of the lowest w/o fuel surrounded by higher w/o fuel 

assemblies at the center. The end result is that the flux profile is raised in the center of the 

core and the outer edge power peak is reduced when compared to figure 4.21.  

 

Concluding Remarks about 3D-TRAN 
 

The results presented in this chapter show 3D-TRAN�s versatility as a 

heterogeneous reactor code. The numerical transport comparison to analytical diffusion 

proved that 3D-TRAN can indeed model a homogenous reactor with flux predictions 

comparing almost exactly to those of the analytical diffusion solutions (in the limit as the 
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spatial meshes are refined). The heterogeneous fuel pin and two-region assembly tests 

showed 3D-TRAN�s ability to correctly initialize a four energy group, multi-region 

reactor problem as well as show the source-sink relationship between different w/o fuel 

assemblies. The heterogeneous tests were expanded to full core models and very 

successfully modeled the fuel management practices outlined in Cochran (1990). The low 

leakage core configuration did indeed produce flatter power profiles than the OUT-IN 

core configuration as described in the text (Cochran, 1990).  

The results also showed that the successful use of DD as a spatial quadrature 

method depends purely on the mesh size and material used. The LC method is considered 

the more accurate method over coarser mesh sizes (based on Chapter 3 results), 

especially with absorbing materials; however, the use of the LC method as a model for 

full core fuel loading schemes is currently hampered by its extensive calculation time. In 

the heterogeneous reactor test cases and the spatial meshes used thus far, the DD method 

and LC method predict virtually the same answers making DD the more viable method 

for producing full core power profiles because of its speedy calculation time. The only 

problem is that heterogeneous cores with high absorbers have not been explored and will 

more than likely cause DD to produce erroneous results over less refined spatial meshes. 

These errors must be carefully scrutinized for when using 3D-TRAN to model any 

reactor based test problem.  
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Chapter V: Conclusions and Recommendations 
 

 

Conclusions about 3D-TRAN code implementation 
 

The 3D-TRAN code was designed to numerically model neutron transport theory 

for a three dimensional spatial problem. The code uses three different types of spatial 

quadratures that model the left hand side of the Boltzmann Transport Equation (BTE). A 

careful comparison of these quadratures showed that the Linear Characteristic (LC) 

quadrature produced results that were more accurate than Diamond Difference (DD), or 

Step.  The error of the LC method tends to be approximately a factor of 10 lower than 

DD and a factor of 100 lower than Step. This fact means that the LC method produces 

more accurate answers over the same size spatial mesh when compared to either DD or 

Step. This result suggests that a less refined spatial mesh can be used to model larger 

dimensioned problems without the hassle of computer �out of memory� errors. DD and 

Step�s requirement for more refined spatial meshes make these two quadratures more 

susceptible to computer memory limitations.  

The heterogeneous uniform source results revealed that the LC method tended to 

produce more stable results over material region boundaries than the DD method. The 

DD method requires more refined spatial meshes near material boundaries especially 

when the optical thickness ratio becomes larger than 4. Without the refinement, the DD 

method calculated negative flux results that oscillated negative and positive about zero. 

These results are numerically induced and do not correctly model the particle interaction 

and attenuation in higher absorbing media.  The LC method retained stability through an 

optical thickness ratio of 10 or less. This means that the LC method required less mesh 
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refinement near material boundaries to produce stable accurate answers. The Step method 

also performed well through material region boundaries, but tended to over predict the 

flux profiles. This result is directly contributed to Step�s assumption of smearing the 

source as a constant function within a computational cell. Step�s inherently linear order of 

error reduction means that Step required more refined meshes to produce answers as 

accurate as DD or LC.  

The cost of running each of the three spatial quadratures is highly different. The 

DD and Step methods required relatively little time to compute one phase space cell 

(2.7E-6 seconds). This means that larger more intensive spatial, angular, and energy mesh 

problems will calculate quickly as long as memory requirements stay well within the 

limitations of the computer. These fast computation times are directly linked to the small 

number of equations required to model the left hand side of the BTE (only about 4 or 5 

simple equations per method). The LC method was quite the opposite. The time required 

to calculate one phase space cell was about a factor of 60 times longer than DD or Step. 

The computation time is directly linked to the large number of linear transformations, cell 

splitting, and linear algebra manipulations required to generate one cell answer. Larger 

meshing problems took substantially longer than DD or Step to calculate an answer. The 

trade-off of longer calculation time is that the LC method is more accurate than DD or 

Step over the same spatial mesh size. This accuracy is accentuated when comparing 

results over multi region problems where absorbing materials are used. The end results 

were that LC produced more accurate answers over higher absorbing media than DD or 

Step; however, the computation costs are much higher than the other two methods.     
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The addition of eigenvalue calculations to the neutron transport equation gave the 

3D-TRAN code the ability to model isotropic fission sources. The results for the 

homogenous reactors show that the 3D-TRAN code accurately modeled the analytical 

diffusion equation solutions for the parallelepiped and right circular cylindrical reactors. 

The results of the cylindrical reactor were compared to the work of Harman (2001) and 

were shown to accurately calculate diffusion-based eigenvalue solutions. These results 

verified the numerical solving routines used in the neutron transport code.   

The addition of eigenvalue calculations to the transport code also introduced the 

threat of high computation times for generating eigenvalue solutions. These times are 

caused by the slow convergence behavior of the power iteration method. Decreasing the 

time to convergence for these calculations is vital to making 3D-TRAN a viable student 

teaching tool. The use of a modified linear extrapolation/shooting method showed 

increases to computation speed on the order of about 60%. The method also performed 

better (approximately a 65% � 70% increase) for problems that required a large number 

of unaccelerated iterations (on the order of thousands). The convergence acceleration 

method did not work well for problems that converged quickly and only produced about a 

10% increase in speed. Initial results for the accelerator were optimized over 

homogenous fission reactor problems, but showed consistently good results for 

heterogeneous problems (on the order of a 60% increase in speed also).  The accelerator 

still needs to be verified over heterogeneous problems and is left as a task for future work 

on this project. 

The homogenous reactor models of 3D-TRAN were expanded to include 

heterogeneous problems. The fuel pin calculation over a unit fuel cell showed that cross-
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section homogenization is possible and can be used to define larger similar composition 

fuel assemblies. The two-region assembly problem demonstrated the source-sink 

relationship between different weight percent fuels and reproduced the correct reactor 

physics behavior for such a configuration.  Multiple assemblies can be linked together to 

model realistic commercial reactor fuel configurations where the student can easily 

manipulate material input parameters to practice fuel management techniques. Example 

reactor configurations demonstrated the fundamental concepts of fuel management 

outlined in Cochran (1990).  

All these results indicate that the 3D-TRAN code is properly modeling the reactor 

physics behavior of an isotropic fission reactor. The addition of benchmarking the spatial 

quadratures against a uniform source also gives 3D-TRAN the ability to model simple 

neutron radiation shielding problems where an isotropic source is known. This versatility 

in design allows 3D-TRAN to be used for a wide range of student problems that can 

serve as an aid to the teaching and understanding of neutron particle physics.  

  

Conclusions about 3D-TRAN as a teaching tool 
 

The main goal of this research was to develop a reactor numerical model that 

accurately modeled neutron particle physics in a reactor based environment. The two 

methods of choice were the diffusion theory and the neutron transport theory. Since 

diffusion theory is a simplification to neutron transport, the neutron transport method was 

pursued for its versatility in modeling heterogeneous regions as well as its capability to 

model the diffusion theory subset of problems. This ability provides a more rounded tool 
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for students to use in modeling reactors of simple or complex geometries. Therefore, the 

main goal of this research has been accomplished.  

The 3D-TRAN code was designed for multiple uses by the student.  The code has 

the capability to model simple diffusion based reactor geometries such as the 

parallelepiped and the circular cylinder. Each reactor can be changed from homogenous 

to heterogeneous by correctly assigning material cross sections to the appropriate regions. 

More complex heterogeneous reactor material initialization routines were written to allow 

for easy problem designs by the student. These routines include fuel pin geometries, fuel 

assemblies and commercial reactor type geometries. The use of region input maps similar 

to those shown in Chapter 4 will allow the student to easily change core configurations 

by simple rearranging of the core input fuel assembly map.  This type of input is similar 

to many commercial reactor codes available to the nuclear power industry today.  

Finally, the output of the code was designed to print out important data such as 

flux profiles by energy group and reactor core average power per assembly maps. This 

output data is crucial for the student to learn how reactors operate and how fuel 

management techniques are integrally linked to the neutron particle interactions in the 

reactor core.  

 

Recommendations for Future Work 
 

As with all research, there are always new possibilities and ideas to help expand 

or improve on current research. The following few paragraphs outline some suggestions 

to help further the numerical reactor model developed in this research.  
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The input and output of the 3D-TRAN code can easily be integrated into a 

windows based environment using techniques similar to those presented by Harman 

(2001). This final push in code development should help make the 3D-TRAN code more 

user friendly and extremely easy for the student to design test problems. 

The linear convergence accelerator should be optimized and/or analyzed for 

overall performance over heterogeneous problems.  The range of problems should cover 

highly absorbing regions verses lower absorbing regions as well as multiple regions of 

varying types. Hopefully the convergence accelerator can be designed smartly and have 

the ability to choose over-relaxation parameters or shooting iteration numbers that best 

match the type of problem being solved. There are also a number of other convergence 

accelerators that may work better than the linear extrapolation model used in this 

research.  Some of these methods are the coarse mesh rebalance method, polynomial 

interpolation and extrapolation techniques, and synthetic diffusion acceleration.  

A material cross section generation routine needs to be added to calculate proper 

cross section data as input to the code. The lack of a generator on 3D-TRAN forces the 

student to hand input cross sections from another source, either referenced from a book or 

another code.  Material cross section data files can be developed as reference libraries for 

the code. A set of user defined inputs such as temperature, and energy profiles should be 

added so the code can properly calculate material cross sections for problems of interest. 

This feature will also aid problem design when time dependence is added to the program 

since material cross sections will have to be calculated at each new time step depending 

on the reactor kinetics and thermal hydraulic properties of the system.  
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Perturbation theory should be added to help determine criticality of the system. 

The main thrust here should be to have the student design a reactor core configuration 

with an eigenvalue that is close to, but greater than one. The student can then perturb the 

cross sections of the fuel uniformly across the core by adding increasing soluble boron 

concentrations in the moderator until an eigenvalue of one is achieved1. The reason the 

core should be designed greater than one is so that the reactor core retains enough fuel to 

remain critical over a defined fuel cycle period. If the reactor is initially designed at a 

criticality value of one without soluble boron, the core will not operate very long before 

becoming sub critical. Therefore, initial super criticality will determine the lifetime of the 

core and will allow the student to vary boron concentration levels to maintain an 

eigenvalue of one during the fuel cycle. At the end of the cycle, the core should be 

critical without any boron present in the core.  

The variation of the core fuel composition over the fuel cycle will require the 

addition of depletion calculations and the addition of time dependence to the transport 

code. Time dependence also introduces the ability to input time dependent material cross 

sections that can be designed to respond to temperature, pressure, and flow variations 

caused by the reactor thermal hydraulic system. A direct coupling of both reactor physics 

and thermal hydraulics introduces the concepts of reactor kinetics and delayed neutrons 

into the code. All these modifications will require time and patience to implement. 

The final improvement is to look at increasing the overall speed by optimizing the 

code as well as enlisting the help of convergence accelerators. A properly optimized code 

and data structure will help increase overall computational efficiency. This effort will be 

required if time dependence is added to the code. Another factor that will aid the codes 
                                                 
1 This method applies to pressurized water reactors only. 
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computational speed is the type of computer system. Computers are becoming faster and 

available computer memory is growing. In a few years, it is estimated that the 3D-TRAN 

will easily be able to run large test problems on a desktop computer efficiently and within 

a reasonable time frame (minutes vs. hours). All these improvements will aid and expand 

the development of 3D-TRAN as a teaching tool for future use in reactor studies.  
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APPENDIX A: Angular Quadrature 
 
 

The Discrete Ordinates quadrature sets are defined based on a unit sphere with 

unit direction vector �Ω  residing within the sphere in a given direction. Two angular 

coordinates (θ, ω) determine the direction of �Ω .  These angular variables are generally 

defined relative to a set of orthogonal spatial coordinates  (Lewis and Miller, 1993). 

Figure A1 below shows the general orientation of the variables to the axes in Cartesian 

coordinates. 

 

 

 

 

 

 

 

 

Figure A1: Angular Directional Variables 

The direction cosines (µ, η, ξ) are linked geometrically by the following relations: 
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 2 2 2 1µ η ξ+ + = . (A.2) 

In three-dimensional space, the unit directional vector �Ω  is specified by a dependent set 

of direction cosines (µ, η, ξ) that form one directional ordinate, n. Therefore, the 

Boltzmann Transport Equation (BTE) is discretized over specific directional ordinates to 

approximate the continuous space that neutral particles can flow. The BTE is then solved 

for specific angles as follows: 

 � � �[ σ(r, E)] (r, ,  E) = S(r, ,  E)n n nΩ ∇ + Ψ Ω Ω
v v v v
" . (A.3) 

The final step after solving for equation (A.3) over each angle is to use the numerical 

quadrature rule of equation (2.4) to solve for the scalar flux. The quadrature rule uses a 

Gaussian Quadrature technique (Atkinson, 1989) to approximate the angular integration 

of the BTE. The general Guassian quadrature formula representation is: 

 
1

1
( ) ( )

n

i i
i

f x dx w f x
−

≅ ∑∫ . (A.4) 

This equation is simple to solve numerically, but requires a careful derivation of the 

weights (wi) to approximate the continuous integration on the left hand side of equation 

(A.4).  

For general applications in solving the BTE, a level symmetric quadrature set can 

be used to solve many different kinds of problems (Lewis and Miller, 1993) (Carlson 

1971). �A level symmetric quadrature (SN) uses the same set of N/2 positive values of the 

direction cosines with respect to each of the three axes� (Lewis and Miller, 1993). This 

statement means that a set of direction ordinates defined over the first octant of the unit 

sphere can be symmetrically reflected about any of three orthogonal axes to generate the 

remaining seven octants of three-dimensional phase space and still maintain the same 
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equal distribution (or weight) of ordinates across all eight octants. All axes are therefore 

weighted the same and the unit sphere becomes tiled in equal or non-equal weighted 

directional ordinates. For example, figure A2 shows the S2 ordinate set in the positive 

octant of the sphere. The ordinate is equally spaced between the three orthogonal axes 

with µ = η = ξ = 0.57735 (from equation (A.2)). The reflection of this ordinate about the 

three orthogonal axes yields the other seven ordinates in the set with each weight 

equaling 1/8 or in general,  

 
( 2) /8

1
1

N N

n
n

w
+

=
=∑  (A.5) 

for any level symmetric ordinate set (Lewis and Miller, 1993).  A detailed description of 

level symmetry is given in Lewis and Miller (1993) pages 158-165 with some more 

descriptive figures referencing the key points mentioned here.  

 

 

 

 

 

 

 

 

 

Figure A2: Level Symmetric S2 Ordinate Set in the Positive Octant 
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APPENDIX B: Transport Boundary Conditions 
 

 

The Boltzmann Transport Equation requires the use of boundary conditions along 

the outside surface of the problem domain in order to generate a solution. These 

boundary conditions can be reflective, albedo, vacuum, or constant flux to name a few. 

The 3D-TRAN code developed in this research uses three boundary conditions: full 

reflective, albedo reflective, and vacuum. These boundary conditions are of the following 

form: 

 � � � �(r, , ) ( ) (r, , ),   for n < 0E E Eα ′Ψ Ω = Ψ Ω Ωv v
"  (B.1) 

where �n is the outward unit normal vector to the boundary surface, rv  resides within the 

problem boundaries, and ( )Eα  is a known isotropic albedo. For vacuum boundary 

conditions, ( )Eα  equals zero and for full reflection, ( )Eα  equals one. Any fraction 

between zero and one constitutes a reflective isotropic albedo (or a portion of the 

outgoing flux returns into the problem along a reflection ray incident to the boundary 

surface). The � ′Ω term represents the directional ordinate that is the reflection of Ω , the 

incident direction ordinate. This reflection is easy to accomplish if a level symmetric 

quadrature set is used.  For example, a reflective boundary means that the angular flux for 

a given direction at the boundary cell is passed into the reflected direction ordinate 

angular array for that cell. In a level symmetric quadrature, there is always an even 

number of ordinates with each ordinate being the reflection of one of the other ordinates 

in the set. This property enables a computer code to build reflection arrays during 

initialization that map the reflected pairs together and identify their ordinate numbers in 
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the set. This makes reflection boundary conditions very easy to implement in transport 

problems.  

Actual implementation of the boundary conditions can be somewhat of an art 

form. During the numerical walk through the spatial mesh in x, y, and z directions, the 

boundaries must be taken into account numerically at some time during the calculation. 

This can be handled one of several ways. First, a directional ordinate is picked. The mesh 

walk then begins by following the general direction of the ordinate vector. As a boundary 

is approached, the boundary condition can be applied at the end of each row calculated. 

For instance, say the mesh walk begins by picking a y value and calculating across the 

row in terms of x. When the maximum x value is reached, the boundary condition can be 

applied. This is repeated every time the maximum value is reached in the row. If a 

parallelepiped problem domain exists, computational speed can be obtained by walking 

through the entire mesh, then calculating all boundary conditions at the end of the spatial 

walk by treating the boundary conditions along an entire plane. This technique is easy to 

implement in FORTAN 95 using array notation (see Ellis, 1994) for the angular flux.  

On the other hand, if we intend to handle a circle with vacuum boundary 

conditions using a Cartesian (x,y,z) mesh (such as our circular reactor geometry), the 

boundary conditions are better implemented as they are approached during the 

calculation. This technique helps us deal with the non-uniform jagged edge of the curved 

boundary created by approximating the curved circular edge in the Cartesian mesh. Also, 

the wasted material array space1 outside the circle can be initialized to zero, which gives 

                                                 
1 Since we are using Cartesian coordinates and matrix arrays, a curved edge leaves part of a material array 
non usable because it resides outside the problem domain of interest.  Therefore, larger arrays will be 
specified than required in order to approximate the curved region along the problem boundary.  See figure 
B1. 
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the computer code a value to search for when walking through the material mesh. When 

the zero value is reached, the code knows it has crossed a boundary and is now outside of 

the problem domain. The code can make appropriate adjustments and implement the 

correct boundary condition at the curved edge. If one is careful, the code can be modified 

to adjust the spatial walk during the transport calculation to only calculate those spatial 

mesh cells that contain material (only those that lie within the problem domain).  This 

technique is implemented in the 3D-TRAN code and improves overall calculation 

efficiency by as much as 22%2 for a two or three dimensional problem. Figure B1 shows 

a diagram of a curved boundary represented as a jagged boundary in a Cartesian mesh.  

This configuration (figure B1) is the common shape of most commercial pressurized 

water reactors in service today and is modeled in the 3D-TRAN code. 

                                                 
2 This efficiency is generated by looking at the area/volume of the cells not contained within the 
circular/cylindrical boundary domain and then comparing it with the area/volume of the total number of 
cells in the array.   
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Figure B1: Two Dimensional (x, y) Curved Boundary Edge Representation 
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APPENDIX C: Derivation of Linear Characteristic Sub Cell Equations 
 

 

The Linear Characteristic Method assumes a linear source distribution of the 

form: 

 u v w( , , ) A + B B BS u v w u v w= + +  (C.1) 

The coordinates of the (x, y, z) unit cell mesh of figure 2.4 are transformed via a Jacobian 

transformation matrix to a unit mesh cell with each side of the cube equal to one. The 

transformed coordinate system changes from (x, y, z) to (u, v, w)1.  We now define a cell 

moment operator to simplify the volumetric zeroth and first moment derivations. This 

unitary operator is as follows: 

 31[ ( )] ( ) 
cell

M g R g R d R
V

= ∫∫∫
v v v

 (C.2) 

where V equals the cell volume and g is a function in (u, v, w) space. A face operator 

similar to equation (C.2) is also defined: 

 21[ ( )] ( ) f
f

face

M g R g R d R
A

= ∫∫
v v v

 (C.3) 

where Af equals the area of the inflow/outflow cell face space. Now, the linear 

characteristic equations can be derived for each of the three sub unit volumes: the 

tetrahedron, the prism, and the parallelepiped.  

 

                                                 
1 The Jacobian transformation method is summarized in the paper authored by Mathews, Miller, and 
Brennan (2000). A summary of the technique pertaining to this research is given in Appendix D. 
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Tetrahedron 

The tetrahedron equations have already been derived (see Mathews, Miller, and 

Brennan, 2000) for a unit tetrahedron. For clarity, the equations are reproduced from the 

paper in the following paragraphs.  

First, the unit tetrahedron is defined as in figure C1. This figure shows the 

orientation of the unit tetrahedron in relation to the streaming direction �Ω . The w axis is 

aligned with the streaming direction.  The unit vectors 1E
v

, 2E
v

, and 3E
v

 form the 

orthogonal Jacobian basis vectors of the tetrahedron. Each of the six arbitrary tetrahedron 

in figure 2.4 is transformed into the unit tetrahedron of figure C1 by defining these basis 

vectors; therefore, the transport equations are only derived once per unit sub volume.  

 

 

 

 

 

 

 

 

Figure C1: The Unit Tetrahedron 

The balance equations for the tetrahedron are derived by using the moment 

operator equation: 
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Applying equation (C.4) on the BTE with the following representation of the streaming 

operator: 

 � ( , , ) ( , , )u v w u v w
w
∂Ω ∇Ψ = Ψ

∂
v
" , (C.5) 

we get for the zeroth balance equation: 

 out in
A A A A3 3 σ  l SΨ − Ψ + Ψ =  (C.6) 

where l is the length of the splitting line made by �Ω  through the global mesh cell, σ is 

the material total cross section in the sub cell, and the average or zeroth flux across the 

inflow face, outflow face and within the cell volume make up the right hand side of the 

equation. The first moments are found by taking the operator of M[(u, v, or w) BTE] 

yielding the first moment balance equation for (u, v, w) : 

 out in
u u u u3 3 σ  l SΨ − Ψ + Ψ =  (C.7) 

 out in
v v v v3 3 σ  l SΨ − Ψ + Ψ =  (C.8) 

 out
v A w w3 3 σ  l SΨ − Ψ + Ψ =  . (C.9) 

These equations are used to check for sub cell neutron balance and verify the linear 

characteristic equations that are derived below. 

The source distribution of equation (C.1) substituted into the moment operator 

equation (C.4) to generate the zeroth and first moment equations of the source. The 

equations are as follows: 

 A
3 1 1[ ( , , )]
4 2 4u v wS M S u v w A B B B= = + + +  (C.10)  

 u
3 3 2 1[  ( , , )]
4 5 5 5u v wS M u S u v w A B B B= = + + +  (C.11) 



123  

 v
1 2 3 3[  ( , , )]
2 5 10 20u v wS M v S u v w A B B B= = + + +  (C.12) 

 w
1 1 3 1[  ( , , )]
4 5 20 10u v wS M w S u v w A B B B= = + + +  (C.13) 

where the volume multiplication factor, V equals 1/6 for the unit tetrahedron, SA equals 

the zeroth source moment, and Su, Sv, and Sw equal the first moments of the source with 

respect to the given axes2. The coefficients are then found by solving equations (C.10) 

through (C.13) in terms of the source moments:  

 A u16 20A S S= −  (C.14) 

 A u20 40 20u vB S S S= − + −  (C.15) 

 u v20 40 20v wB S S S= − + −  (C.16) 

 u20 40w wB S S= − +  (C.17) 

The source distribution is now known within the cell because the source moments are 

either specified as initial conditions or are provided from the previous iteration.   

The next step is to define the flux distribution across the inflow faces. This 

requires a face flux distribution function of the following linear form: 

 ( , )f f f f f f f f
in u vu v A B u B vΨ = + +  (C.18) 

where the super script f refers to the inflow face coordinate system of the master unit 

cube cell. This coordinate system should not be confused with the volume coordinate 

system shown in figure C1. A new face moment operator for the tetrahedron is defined as 

follows: 

                                                 
2 The first moments derived in the sub volume cells are defined for corner moments. These moments need 
to be converted back to central moments when compiling the outflow face first moments.  This is 
accomplished in order to maintain central values distributed about the center of the cell where the cell 
average flux resides. 
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1

0 0
[ ( , )] 2   ( , )

uf f f f f f fM g u v du dv g u v= ∫ ∫  (C.19) 

where Af is the area of the inflow face (1/2 for a unit triangle). By applying the face 

moment operator, the zeroth and first moments of the inflow face flux are found: 

 in
A

2 1[ ( , )]
3 3

f f f f f f f
in u vM u v A B BΨ = Ψ = + +  (C.20) 

 in
u

2 1 1[ ( , )]
3 2 4

f f f f f f f f
in u vM u u v A B BΨ = Ψ = + +  (C.21) 

 in
v

1 1 1[ ( , )]
3 4 6

f f f f f f f f
in u vM v u v A B BΨ = Ψ = + +  (C.22) 

where in
AΨ equals the zeroth moment across the inflow face, and in

uΨ and in
vΨ equal the 

inflow face first moments. These fluxes contribute to the neutron flux within the cell and 

are added to the cell source neutron flux. Now, the face coefficients are found by solving 

equations (C.20) through (C.22) for the flux moments:  

 in in
A u9 12fA = Ψ − Ψ  (C.23)  

 in in in
A u v12 24 12u

fB = − Ψ + Ψ − Ψ  (C.24) 

 in in
A v12 24f

vB = − Ψ + Ψ . (C.25) 

The flux distribution across the inflow face is now known because the flux is either 

specified at a boundary, or the flux is known from the output flux of the preceding cell in 

the mesh. We now have all the required values to solve for the flux inside the cell.  

For any point in (u,v,w), the flux inside the cell is given by the characteristic 

integral: 

 ( )

0
( , , ) ( , )  ( , , ) 

win w w wu v w u v e l dw S u v w eε ε ′− − −′Ψ = Ψ + ∫  (C.26) 
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where the integration is performed along the streaming direction w′ , andε  is the optical 

thickness along w′ . The operators of equations (C.2) and (C.19) are applied to equation 

(C.26) for both the zeroth and first moments of the fluxes. A new function is used to 

compactly write the integrals that fall out of performing the integration on equation 

(C.26) for all moments.  This function is called the K function and was developed by 

Miller (1998), Brennan (1996) and Mathews (2000). The general form of the K function 

is as follows: 

 1 1
1 2

1 2

1

, ,..., 1 2 1 20 0 0
( ) ... ...m

m m

m

t t i ti i
i i i m mK dt dt dt t t t e εε − −= ∫ ∫ ∫  (C.27) 

The volumetric moments of the sub cell flux can then be derived and defined in a 

compact form as follows: 

 A 0,0,0 1,0,0 0,1,0 0,0,0,0

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

6 ( ) 6 ( ) 6 ( ) 6  ( )

      6  ( ) 6  ( ) 6 [ ( ) ( )]
u v

f f f

u v w

A K B K B K Al K
B l K B l K B l K K

ε ε ε ε
ε ε ε ε

Ψ = + + +

+ + + −
 (C.28) 

 u 1,0,0 2,0,0 1,1,0 1,0,0,0

2,0,0,0 1,1,0,0 1,0,1,0 1,0,0,1

6 ( ) 6 ( ) 6 ( ) 6  ( )

      6  ( ) 6  ( ) 6 [ ( ) ( )]
u v

f f f

u v w

A K B K B K Al K
B l K B l K B l K K

ε ε ε ε
ε ε ε ε

Ψ = + + +

+ + + −
 (C.29) 

 v 0,1,0 1,1,0 0,2,0 0,1,0,0

1,1,0,0 0,2,0,0 0,1,1,0 0,1,0,1

6 ( ) 6 ( ) 6 ( ) 6  ( )

      6  ( ) 6  ( ) 6 [ ( ) ( )]
u v

f f f

u v w

A K B K B K Al K
B l K B l K B l K K

ε ε ε ε
ε ε ε ε

Ψ = + + +

+ + + −
 (C.30) 

 w 0,0,1 1,0,1 0,1,1 0,0,1,0

1,0,1,0 0,1,1,0 0,0,2,0 0,0,1,1

6 ( ) 6 ( ) 6 ( ) 6  ( )

      6  ( ) 6  ( ) 6 [ ( ) ( )]
u v

f f f

u v w

A K B K B K Al K
B l K B l K B l K K

ε ε ε ε
ε ε ε ε

Ψ = + + +

+ + + −
 (C.31) 

where those terms multiplied by l represent the flux contribution from the source and the 

terms multiplied by the face coefficients represent the flux contributions from the inflow 

faces.  

Finally, the outflow fluxes are calculated.  The outflow face of the tetrahedron is 

the plane where w = v, so the characteristic integral for the outflow face becomes: 
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 ( )

0
( , ) ( , )  ( , , ) 

vout in v v wu v u v e l dw S u v w eε ε ′− − −′Ψ = Ψ + ∫  (C.32) 

The outflow flux moments then become: 

 
out
A 0,0 1,0 0,1 0,0,0

1,0,0 0,1,0 0,0,1

2 ( ) 2 ( ) 2 ( ) 2  ( )
          +2  ( ) 2( )  ( ) 2  ( )

f f f
u v

u v w w

A K B K B K Al K
B l K B B l K B l K

ε ε ε ε
ε ε ε

Ψ = + + +
+ + −

 (C.33) 

 
out
u 1,0 2,0 1,1 1,0,0

2,0,0 1,1,0 1,0,1

2 ( ) 2 ( ) 2 ( ) 2  ( )
          +2  ( ) 2( )  ( ) 2  ( )

f f f
u v

u v w w

A K B K B K Al K
B l K B B l K B l K

ε ε ε ε
ε ε ε

Ψ = + + +
+ + −

 (C.34) 

 
out
v 0,1 1,1 0,2 0,1,0

1,1,0 0,2,0 0,1,1

2 ( ) 2 ( ) 2 ( ) 2  ( )
          +2  ( ) 2( )  ( ) 2  ( )

f f f
u v

u v w w

A K B K B K Al K
B l K B B l K B l K

ε ε ε ε
ε ε ε

Ψ = + + +
+ + −

 (C.35) 

The paper by Mathew, Miller, and Brennan (2000) discusses numerical implementation 

of these equations. The use of recursion relations on the K functions allows for stable, 

accurate (to within 16 decimal places) (Mathews, Miller, and Brennan, 2000) evaluations 

of all the required integrals. By using a subroutine developed by Miller (1998), the K 

functions can be calculated quickly and efficiently by using series expansions and 

recursive relations. Therefore, no new developments were made to the K function 

routines other than those implemented by Miller (1998).  

The following sections cover the prism and the parallelepiped. The derivation of 

the equations for each volume follows the same procedure as the tetrahedrons and is 

outlined in Suriano (2001); therefore, for compactness, only the equations and unit 

volume diagrams will be presented.  
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Prism 

The prism sub cell equations were derived in conjunction with the work of 

Suriano (2001). The derivations follow the procedure outlined in the previous section; 

therefore, only the equations are provided for reference. Figure C2 illustrates the 

orientation of the unit prism and its basis vectors.   

 

 

 

 

 

 

 

 

 

 

 

Figure C2: The Unit Prism 

The volumetric moment operator for deriving the prism equations is as follows: 

 
1 1

0 0 0
[ ( , , )] 2    ( , , )

v
M g u v w du dv dw g u v w= ∫ ∫ ∫  (C.36) 

and the face moment operator is: 

 
1 1

0 0
[ ( , )]   ( , )f f f f f f fM g u v du dv g u v= ∫ ∫  (C.37) 

The balance equations for the prism are as follows: 

w 

v 

u 

1E
v

 

2E
v

 

3E
v

0 (0,0,0)R =
v

 

1 ( 1,0,0)R = +
v

2 ( 1, 1,0)R = + +
v

3 ( 1, 1, 1)R = + + +
v

 

�Ω  



128  

 A A A AZeroth:                2 2 σOut in SΨ − Ψ + Ψ =  (C.38) 

 u u u uFirst  moment:  2 2 σOut inu SΨ − Ψ + Ψ =  (C.39) 

 v v v vFirst  moment:  2 2 σOut inv SΨ − Ψ + Ψ =  (C.40) 

 v A w wFirst  moment:  2 2 σOutw SΨ − Ψ + Ψ =  (C.41) 

The volumetric source coefficients are: 

 A12 6 12u vA S S S= − −  (C.42) 

 A6 12u uB S S= − +  (C.43) 

 A12 24 12v u wB S S S= − + −  (C.44) 

 12 24w v wB S S= − +  (C.45) 

The inflow face coefficients are: 

 A7 6 6f in in in
u vA = Ψ − Ψ − Ψ  (C.46) 

 A6 12f in in
u uB = − Ψ + Ψ  (C.47) 

 A6 12f in in
v vB = − Ψ + Ψ  (C.48) 

The volumetric moments of the sub cell prism are: 

 A 0,0 1,0 0,0,0

1,0,0 0,1,0 0,0,1

(2 ) ( ) 2 ( ) (2 ) ( )
          +2 [ ( ) ( ) ( )]

f f f
u v u

v w w

A B K B K l A B K
l B K B K B K

ε ε ε
ε ε ε

Ψ = + + + +
+ −

 (C.49) 

 0,0 1,0 0,0,0

1,0,0 0,1,0 0,0,1

2 2( ) ( ) ( ) ( ) ( )
3 3

          + [ ( ) ( ) ( )]

f f f
u u v u

v w w

A B K B K l A B K

l B K B K B K

ε ε ε

ε ε ε

Ψ = + + + +

+ −
 (C.50) 

 1,0 2,0 1,0,0

2,0,0 1,1,0 1,0,1

(2 ) ( ) 2 ( ) (2 ) ( )
          +2 [ ( ) ( ) ( )]

f f f
v u v u

v w w

A B K B K l A B K
l B K B K B K

ε ε ε
ε ε ε

Ψ = + + + +
+ −

 (C.51) 
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 0,1 1,1 0,1,0

1,1,0 0,2,0 0,1,1

(2 ) ( ) 2 ( ) (2 ) ( )
          +2 [ ( ) ( ) ( )]

f f f
w u v u

v w w

A B K B K l A B K
l B K B K B K

ε ε ε
ε ε ε

Ψ = + + + +
+ −

 (C.52) 

Finally, the outflow fluxes are: 

 A 0 1 0,0

1,0 0,1

1 1( ) ( ) ( ) ( ) ( )
2 2

           ( ) ( )  ( )

out f f f
u v u

v w w

A B K B K l A B K

l B B K l B K

ε ε ε

ε ε

Ψ = + + + +

+ + −
 (C.53) 

 
0 1 0,0

1,0 0,1

1 1 1 1 1( ) ( ) ( ) ( ) ( )
2 3 2 2 3

1 1           ( ) ( ) ( )
2 2

out f f f
u u v u

v w w

A B K B K l A B K

l B B K l B K

ε ε ε

ε ε

Ψ = + + + +
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 (C.54) 

 1 2 1,0

2,0 1,1

1 1( ) ( ) ( ) ( ) ( )
2 2

           ( ) ( )  ( )

out f f f
v u v u

v w w

A B K B K l A B K

l B B K l B K

ε ε ε

ε ε

Ψ = + + + +

+ + −
 (C.55) 
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Parallelepiped (Unit Cube) 

The parallelepiped sub cell equations were also derived in conjunction with the 

work of Suriano (2001). The derivations follow the procedure outlined in the tetrahedron 

section; therefore, only the equations are provided for reference. Figure C3 illustrates the 

orientation of the unit parallelepiped and its basis vectors.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure C3: The Unit Parallelepiped (Cube) 

The volumetric moment operator for deriving the prism equations is as follows: 

 
1 1 1

0 0 0
[ ( , , )]    ( , , )M g u v w du dv dw g u v w= ∫ ∫ ∫  (C.56) 

and the face moment operator is: 

 
1 1

0 0
[ ( , )]   ( , )f f f f f f fM g u v du dv g u v= ∫ ∫  (C.57) 

The balance equations for the prism are as follows: 
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 A A A AZeroth:                            σout in SΨ − Ψ + Ψ =  (C.58) 

 First  moment:              σout in
u u u uu SΨ − Ψ + Ψ =  (C.59) 

 First v moment:              σout in
v v v vSΨ − Ψ + Ψ =  (C.60) 

 A AFirst w moment:              σout
w wSΨ − Ψ + Ψ =  (C.61) 

The volumetric source coefficients are: 

 A10 6 6 6u v wA S S S S= − − −  (C.62) 

 A6 12f
u uB S S= − +  (C.63) 

 A6 12f
v vB S S= − +  (C.64) 

 A6 12f
w wB S S= − +  (C.65) 

The inflow face coefficients are the same as derived for the prism, equations (C.46) 

through (C.48).  The volumetric moments of the sub cell prism are: 

 A 0,0

1,0 0,1

1 1 1 1[ ] ( )  [ ] ( )
2 2 2 2

           [ ( ) - ( )]

f f f
u v u v

w

A B B l A B B K

l B K K

ε ε

ε ε

Ψ = + + + + +

+

0M
 (C.66) 
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2 3 4 2 3 4
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f f f
u u v u v
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A B B l A B B K

l B K K

ε ε

ε ε
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0M
 (C.67) 
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1,0 0,1

1 1 1 1 1 1[ ] ( )  [ ] ( )
2 4 3 2 4 3

1          [ ( ) - ( )]
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f f f
v u v u v
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A B B l A B B K

l B K K

ε ε

ε ε

Ψ = + + + + +

+

0M
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 1,0

2,0 1,1

1 1 1 1[ ] [ ( )(1- ( ))]  [ ] ( )
2 2 2 2

           [ ( ) - ( )]

f f f
w u v u v

w

A B B l A B B K

l B K K

ε ρ ε ε

ε ε

Ψ = + + + + +

+

0M
 (C.69) 

Finally, the outflow fluxes are: 
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 A
1 1 1 1[ ] [ ( )] ( )
2 2 2 2

Out f f f
u v u v wA B B e l A B B Bε ρ ε ε−Ψ = + + + + + + 0M  (C.70) 

 1 1 1 1 1 1 1[ ] [ ( )] ( )
2 3 4 2 3 4 2

Out f f f
u u v u v wA B B e l A B B Bε ρ ε ε−Ψ = + + + + + + 0M  (C.71) 

 1 1 1 1 1 1 1[ ] [ ( )] ( )
2 4 3 2 4 3 2

Out f f f
v u v u v wA B B e l A B B Bε ρ ε ε−Ψ = + + + + + + 0M  (C.72) 

The final set of equations use a new set of integral functions similar to the k functions, 

but more complex (the ( )ε0M function). These functions are called exponential moment 

functions.  The derivation and exploration of these functions can be found in Minor 

(1993), Brennan (1996), and Miller (1998).  

The exponential moment function of order n is represented as3 

 
1

0
( ) (1 )n tt e dtεε −= −∫nM . (C.73) 

Therefore, our moment function is equal to 

 
1

0

1( ) t ee dt
ε

εε
ε

−
− −= =∫0M . (C.74) 

In the derivation of the parallelepiped equations, we encounter exponential moment 

functions of order n = 0 and n = 1. A recursive relation exists between these two 

functions that allows us to write (Mathews, Sjoden, and Minor, 1994): 

 1 ( )( ) n εε
ε

−= n-1
n

M
M  (C.75) 

And, for greater simplification of the derivation, let  

 ( )( )
( )
ερ ε
ε

= 1

0

M
M

. (C.76) 

                                                 
3 A good explanation of one-dimensional moment functions is provided in the paper by Mathews, Sjoden, 
and Minor (1994). As with the K functions, the exponential functions must be carefully implemented to 
retain numerical stability, especially when ε is small (see equation (C.74)). 
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APPENDIX D: Procedure for Linear Characteristic Calculations  
 

The linear characteristic method is part of the family of numerical integration 

techniques that solves the BTE by performing integrations along the directional path of 

particle flow to derive a set of fundamental numerical based equations. These equations 

are derived for a unit computational cell that resides in an array of similar unit cells. In 

three dimensions, the most common unit cell is the boxoid or cubic type cell.  The 

problem with using this type of cell is that the orientation of the neutron particle flow 

changes with respect to the cells fixed position in a mesh array. Therefore, the derivation 

of the linear characteristic equations must be performed efficiently in a way that unit 

volumes or subsequent unit sub volumes are oriented along the particle streaming 

direction. These derivations were performed in Appendix C. In this section, the procedure 

for orienting and defining the unit sub volumes is described as well as the procedure for 

the breaking down of and recombining of the global inflow, outflow, and volumetric 

fluxes. 

 

Defining the Sub Cell Volumes 

We begin our discussion by looking at the sub division of the global unit cell in 

figure D1. The sub volumes are determined by the orientation of the most recent 

directional ordinate picked from the SN set. For figure D1, we choose a z dominant (or ξ 

dominant) directional ordinate to define our sub volumes1. If the ordinate lies off the 

                                                 
1 The z dominant directional ordinate (as pictured in figure D1) serves as the basis for defining the 
orientation of all sub volumes in this research. For x and y dominated directional ordinates, a rotation of the 
unit cell is performed to avoid unnecessary derivations of new sub cells.  This rotation of the global unit 
cell requires a swap between the inflow and outflow faces that corresponds directly with the correct x or y 
dominant case.  
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diagonal of the boxoid cell, the global unit cell is broken down into eleven different sub 

volumes2 listed as in figure D1. Each inflow face is given a reference name. When 

looking at figure 2.2 in Chapter 2, Face 1 corresponds directly with the back inflow face, 

Face 2 corresponds directly with the down inflow face, and Face 3 corresponds directly 

with the left inflow face. Each inflow face has a given number of sub volumes associated 

with it based on whether or not the sub volume inflow face resides on the global cell 

inflow face. For instance, Face 3 consists of two tetrahedrons and a prism where 

tetrahedron 1 and the prism both exit on the top face of the cube while tetrahedron 2 exits 

out the front face.  

 

 

 

 

 

 

 

 

 

Figure D1: Subdivision of Global Unit cell - Off Diagonal Ordinate 

                                                 
2 If the directional ordinate falls on the diagonal of the cell, five of the sub volumes disappear and only the 
six tetrahedrons remain. 
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The exiting faces of the unit cell (the front, right, and top face) are also composed 

of the exiting faces of the sub cells. Each face, both inflow and outflow, has a specified 

orientation depicted by the directional ordinate vector.  For tetrahedrons, we have inflow 

and outflow faces defined by triangles while the prism faces are defined by 

parallelograms and rectangles. The parallelepiped has square inflow and outflow faces. 

The sub cell faces and volumes are defined by sets of basis vectors. For all volumes, the 

basis vectors are formed by tracing a path along three adjoining edges in a direction that 

finishes with the last vector pointing in the direction of the directional ordinate vector. 

The boundaries of the inflow and outflow areas are traced by two adjoining vectors. In 

both cases, the vectors are arranged so that the previous vector�s head meets the tail of 

the next adjoining vector.  

To illustrate the concept of vector basis formulation, we examine figure D2 for 

tetrahedron 1 on Face 1. The volumetric basis vectors that form Face 1, tetrahedron 1 

consist of vectors 1E
v

, 2E
v

, and 3E
v

. The inflow face resides on the backside of the cube 

and is constructed from vectors 1E
v

 and 2E
v

. The outflow face is constructed with vector 

1E
v

 and the vector formed by connecting the heads of vectors 1E
v

and 3E
v

. The vectors are 

then defined by using the x or y distance as in figure D2 with subscripts A or B.  The 

subscript A refers to the x or y distance that lies between the z-axis and the intersection of 

the directional ordinates vector head with the top of the unit cell. The B subscript refers 

to the remaining x or y distance. The points Xa and Ya are found using the slope of the 

directional ordinate or for z dominant ordinates: 

 aX ( / ) Abs zµ ξ= ∆  (D.1) 

 aY ( / ) Abs zη ξ= ∆ . (D.2) 
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The basis vectors for the volume and area faces are defined in table D1 for all the sub cell 

shapes and the global unit cell. These volumetric basis vectors serve as global (x, y, z) 

reference matrices for the Jacobian transformations that convert the sub cells over to unit 

tetrahedrons, unit prisms, and unit cubes (see appendix C for unit cell orientations) in (u, 

v, w) space3. The basis vectors are always chosen so that the Jacobian transformation 

process yields a right handed set of orthogonal axes. Notice that the third basis vector, 

3E
v

, lies in the same vector orientation as the directional ordinate. This must always be 

true because the transport equations of appendix C are defined along the streaming 

direction; therefore, the orientation of the sub cells in (x, y, z) to the streaming direction 

must match the orientation of the unit volumes with the streaming direction.  

 

   

 

 

 

 

 

 

 

Figure D2: Basis Vector Formulation for Tetrahedron 1, Face 1 

                                                 
3 The 1E

v
, 2E
v

, and 3E
v

 vectors correspond directly with the u, v, and w axis in the transformed coordinate 
system of the unit sub volumes of appendix C.  
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Transformation and Calculation of Unit Cell Moments 

 The exact procedure for performing the transformation process for the Linear 

Characteristic method as well as the assembly of the fluxes from the unit sub volumes is 

described in detail in the paper by Mathews, Brennan, and Miller (2000). A brief 

overview of the method is provided in the following paragraphs with care taken not to 

show any detail. The reader is directed to the aforementioned paper for greater 

clarification and in depth understanding of the theory behind the transformation process 

and procedures required for the linear characteristic method.   

In summary, the calculation of the unit cell flux requires that the zeroth and first 

moments across the cell inflow faces be known. The source zeroth and volumetric 

moments must also be known with in the cell volume. These values are either specified or 

known from previous iterations. The known values are used to compute global cell source 

coefficients across each input face to the global unit cell. The global coefficients 

describing the incoming flux shape are then transformed from (x, y, z) to (u, v, w) space 

using the Jacobi basis vectors (described in the previous section) of the global unit cell 

and the Jacobi matrix of the sub cells. The transformed coefficients are used to calculate 

the sub cell zeroth and first moments in the volume and across the exiting face. Each sub 

volume is calculated in a similar way using its own Jacobi matrix as the basis for the 

calculation. The transport equations required for this step were derived in appendix C. 

After the calculations are performed, the sub volume flux moments are transformed back 

from (u, v, w) to (x, y, z) space. The flux moments across the exiting face of the sub 

volume are also transformed from (u, v) to (x, y). The moments from all the sub cell 

volumes are averaged together using a volume-weighted average to calculate one 
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volumetric zeroth moment and three volumetric first moments for the global unit cell. 

The flux moments across each exiting sub cell face are recombined using a similar 

technique of area weighted averaging to compile the zeroth and first moments of the flux 

across each of the three outflow faces of the global unit cell. The process repeats itself for 

each computational cell in the mesh.  
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    Volumetric   Inflow Face Outflow Face 

  1E
v

 2E
v

 3E
v

 1E
v

 2E
v

 1E
v

 4E
v

 

Face 1            
tetrahedron 1 (0, -Ya, 0) (0, 0, -∆z) (Xa,Ya, ∆z) (0, -Ya, 0) (0 ,0, -∆z) (0, -Ya, 0) (Xa, Ya, 0) 
prism (0, -Yb, 0) (0,-Ya, -∆z) (Xa,Ya, ∆z) (0, -Yb, 0) (0,-Ya, -∆z) (0, -Yb, 0) (Xa, 0, 0) 
tetrahedron 2 (0, 0, ∆z) (0,-Ya, -∆z) (Xa,Ya, ∆z) (0, 0, ∆z) (0,-Ya, -∆z) (0, 0, ∆z) (Xa, 0, 0) 
             
Face 2            
prism 1  (0, Yb, 0) (-Xa, -Ya, 0) (Xa,Ya, ∆z) (0, Yb, 0) (-Xa, 0, 0) (0, Yb, 0) (0,Ya, ∆z) 
tetrahedron 1 (0, Ya, 0) (-Xa, 0, 0) (Xa,Ya, ∆z) (0, Ya, 0) (-Xa, -Ya, 0) (0, Ya, 0) (0, 0, ∆z) 
tetrahedron 2 (-Xa, 0, 0) (0, -Ya, 0) (Xa,Ya, ∆z) (-Xa, 0, 0) (0, -Ya, 0) (-Xa, 0, 0) (Xa, 0, ∆z) 
prism 2 (-Xb, 0, 0) (0, -Ya, 0) (Xa,Ya, ∆z) (-Xb, 0, 0) (0, -Ya, 0) (-Xb, 0, 0) (Xa, 0, ∆z) 
parallepiped (Xb, 0, 0) (0, Yb, 0) (Xa,Ya, ∆z) (Xb, 0, 0) (0, Yb, 0) (Xb, 0, 0) (0, Yb, 0) 
             
Face 3            
tetrahedron 1 (Xa, 0, 0) (-Xa, 0, -∆z) (Xa,Ya, ∆z) (Xa, 0, 0) (-Xa, 0, -∆z) (Xa, 0, 0) (0, Ya, 0) 
prism (Xb, 0, 0) (-Xa, 0, -∆z) (Xa,Ya, ∆z) (Xb, 0, 0) (-Xa, 0, -∆z) (Xb, 0, 0) (0, Ya, 0) 
tetrahedron 2 (0, 0, -∆z) (-Xa, 0, 0) (Xa,Ya, ∆z) (0, 0, -∆z) (-Xa, 0, 0) (0, 0, -∆z) (0,Ya, ∆z) 
             
Global cell (∆x, 0, 0) (0, ∆y, 0) (0, 0, ∆z)       
Left Face      (∆x, 0, 0) (0, 0, ∆z)     
Back Face      (0, -∆y, 0) (0, 0, ∆z)     
Down Face      (-∆x, 0, 0) (0, ∆y, 0)     
Right Face        (-∆x, 0, 0) (0, 0, ∆z) 
Front Face        (0, ∆y, 0) (0, 0, ∆z) 
Top Face           (∆x, 0, 0) (0, ∆y, 0) 

 

 

 

Table D1: Basis Vectors for Sub Volume Cells and Global Unit Cell 
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APPENDIX E: Reactor Test Problem Input Data 
 

 

The following tables summarize the input data used in the heterogeneous reactor 

test problems in Chapter 4. Table E1-E4 summarizes the data from table 7-1 of 

Duderstadt and Hamilton (1976). The macroscopic cross-section data was calculated 

based on 2 w/o, 3 w/o, and 4 w/o fuel. The fuel is assumed to be UO2 at 9.975 g/cm3. The 

cladding is assumed to by pure zirconium with cross section data taken from Bridgeman 

(1999). 

 

g σσσσtr νννν σσσσf σσσσa σσσσgg

1 4.70 2.65 1.30 1.50 1.90
2 7.00 2.55 1.40 0.30 5.30
3 51.00 2.50 23.00 18.01 9.99
4 597.00 2.50 490.00 97.00 10.00

U-235

Table E1: Four-Group U-235 Cross-Section Data (in Barns) 

g σσσσtr νννν σσσσf σσσσa σσσσgg

1 4.70 2.65 0.53 2.14 2.03
2 7.00 0.00 0.00 0.18 6.82
3 11.00 0.00 0.00 0.81 10.19
4 13.00 0.00 0.00 2.40 10.60

U-238

Table E2: Four-Group U-238 Cross-Section Data (in Barns)  
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g χχχχ(E) σσσσtr σσσσa σσσσg-g+1 σσσσgg σσσσtr σσσσgg

1 0.575 3.08 0.00 2.81 0.27 7.11 5.53
2 0.425 10.52 0.00 4.04 6.48 7.7 7.65
3 0.00 16.55 0.04 4.14 12.38 7.7 7.65
4 0.00 68.60 0.57 0.00 68.03 8.1 8

ZrH2O

Table E3: Four Group Water and Zr Cross-Section Data (in Barns) 

Material
Atom density 
(atoms/cm3) w/o

U-235 6.7582E+20 3
U-235 9.0108E+20 4
U-235 1.1263E+21 5
U-238 2.1570E+22 3
U-238 2.1353E+22 4
U-238 2.1130E+22 5
Water 3.3427E+22 NA
Zr 4.2910E+22 NA

Table E4: Atom Density for Reactor Materials 
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